Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The thermal and photochemical mechanistic pathways for tertiary alcohols on the rutile TiO(110)-surface are studied with the example of tert-butanol. While the thermal reaction is known to yield isobutene, the photochemical ejection of a methyl radical is observed at 100 K. The C-C scission, which is accompanied by the formation of acetone, is the only photochemical reaction pathway at this temperature and can be attributed to the reaction of photoholes that are created upon UV-light illumination at the surface of the n-type semiconductor. At 293 K the selectivity of the reaction changes, as isobutene is additionally formed photochemically. A comparison of the kinetics of the different reactions reveals further insights. Together with the quantitative evaluation of the reaction products at low temperatures and the comparison of the reaction pathways at different temperatures it is demonstrated how thermal effects can influence the selectivity of the reactions in photocatalysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8cp00223a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!