We performed density functional theory calculations to investigate the effect of solvation and temperature on the adsorption of small organic molecules on calcite. The Conductor like Screening Model for Real Solvents (COSMO-RS) solvation model was used to describe a multicomponent mixture consisting of both hydrophobic and hydrophilic phases. The results demonstrate that the combination of solvation and temperature significantly influences adsorption, with the effect of temperature dominating over the effect of solvation. At 25 °C, carboxylic acids and methanol are stable on calcite with free energy of adsorption <0 in the hydrophobic phase. None of the molecules considered in this study remain on the surface in the hydrophilic phase.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7cp06747j | DOI Listing |
J Phys Chem B
January 2025
Department of Polymers for Electronics and Photonics, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Prague 6 162 00, Czech Republic.
The structural response of 1,2-dimyristoyl-glycero-3-phosphatidylcholine (DMPC)/water bilayers to addition and subsequent solvation of a small amphiphilic molecule - an anesthetic benzyl alcohol - was studied by means of solid-state NMR (H NMR, P NMR) spectroscopy and low-angle X-ray diffraction. The sites of binding of this solute molecule within the bilayer were determined - the solute was shown to partition between several sites in the bilayer and the equilibrium was shown to be dynamic and dependent on the level of hydration and temperature. At the same time, it was shown that solubilization of benzyl alcohol reached a solubility limit and was terminated when the ordering profile of DMPC hydrocarbon chains adopted finite limiting values throughout the whole chain.
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2025
CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.
Solvatochromism exhibited by azobenzene-4-sulfonyl chloride (here abbreviated as Azo-SCl) has been investigated in a series of non-polar, polar-aprotic and polar-protic solvents. The UV-vis spectra of Azo-SCl exhibit two long-wavelength bands, observed at 321-330 nm (band-I) and 435-461 nm (band-II), which are ascribed to the π*-π (S ← S) and π*-n (S ← S) transitions, respectively. The shorter wavelength band indicates a reversal in solvatochromism, from negative to positive solvatochromism, for a solvent with a dielectric constant of 32.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas 66506, United States.
Metal flux methods are excellent for synthesizing high-quality hexagonal boron nitride (hBN) crystals, but the atomic mechanisms of hBN nucleation and growth in these systems are poorly understood and difficult to probe experimentally. Here, we harness classical reactive molecular dynamics (ReaxFF) to unravel the mechanisms of hBN synthesis from liquid nickel solvent over time scales up to 30 ns. These simulations mimic experimental conditions by including relatively large liquid nickel slabs containing dissolved boron and a molecular nitrogen gas phase.
View Article and Find Full Text PDFUnderstanding how vitamins and fertilizers interact in aquatic environments is crucial for managing water quality, protecting aquatic life, and promoting sustainable agricultural practices. The molecular interactions between nicotinamide (NA) and two fertilizers, potassium chloride (KCl) and diammonium hydrogen phosphate (DAP), were examined by density () and viscosity () measurements in order to investigate and analyze the solvation behavior that occurs in the ternary solutions (NA + KCl/DAP + water). All of these investigations were conducted at temperatures ranging from 293.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry and Nuclear Science & Engineering Center, Colorado School of Mines, Golden, Colorado 80401, United States.
Three Sm(II) dibenzo-24-crown-8 (db24c8) complexes were synthesized in anhydrous, air-free conditions via the reaction of SmI with db24c8 and tetrabutylammonium tetraphenylborate ([TBA][BPh]; where needed) in acetonitrile (CHCN), dimethoxyethane (DME), and tetrahydrofuran (THF) to yield [Sm(db24c8)(CHCN)][BPh][I]·CHCN, [Sm(db24c8)(DME)]I, and [Sm(db24c8)(THF)]I, respectively. In each case, a 10-coordinate, staggered dodecahedral (2:6:2) environment is formed around the Sm center that is completed by either two solvent molecules (CHCN or THF) or one bidentate solvent molecule (DME). Inner-sphere solvent molecules can be excluded by reacting SmI with db24c8 in 1:3 THF:toluene to yield Sm(db24c8)I.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!