Clinical testing of and began over 20 years ago. With the expiration and overturning of the patents, limitations on which laboratories could offer commercial testing were lifted. These legal changes occurred approximately the same time as the widespread adoption of massively parallel sequencing (MPS) technologies. Little is known about how these changes impacted laboratory practices for detecting genetic alterations in hereditary breast and ovarian cancer genes. Therefore, we sought to examine current laboratory genetic testing practices for /. We employed an online survey of 65 questions covering four areas: laboratory characteristics, details on technological methods, variant classification, and client-support information. Eight United States (US) laboratories and 78 non-US laboratories completed the survey. Most laboratories (93%; 80/86) used MPS platforms to identify variants. Laboratories differed widely on: (1) technologies used for large rearrangement detection; (2) criteria for minimum read depths; (3) non-coding regions sequenced; (4) variant classification criteria and approaches; (5) testing volume ranging from 2 to 2.5 × 10 tests annually; and (6) deposition of variants into public databases. These data may be useful for national and international agencies to set recommendations for quality standards for clinical testing. These standards could also be applied to testing of other disease genes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5814433PMC
http://dx.doi.org/10.1038/s41525-018-0046-7DOI Listing

Publication Analysis

Top Keywords

clinical testing
12
variant classification
8
testing
6
laboratories
5
testing worldwide
4
worldwide snapshot
4
snapshot technological
4
technological practices
4
practices clinical
4
testing began
4

Similar Publications

Background: The homologous recombination deficiency (HRD) test is an important tool for identifying patients with epithelial ovarian cancer (EOC) benefit from the treatment with poly(adenosine diphosphate-ribose) polymerase inhibitor (PARPi). Using whole exome sequencing (WES)-based platform can provide information of gene mutations and HRD score; however, the clinical value of WES-based HRD test was less validated in EOC.

Methods: We enrolled 40 patients with EOC in the training cohort and 23 in the validation cohort.

View Article and Find Full Text PDF

The global HIV epidemic remains a major public health challenge, with DTG playing a key role in ART regimens due to its efficacy and tolerability. This study evaluated virological outcomes and resistance mutations in patients on DTG in Mozambique through a retrospective cohort study in seven DREAM centers. Data from 29,601 patients (98.

View Article and Find Full Text PDF

A large set of antimalarial molecules (N ~ 15k) was employed from ChEMBL to build a robust random forest (RF) model for the prediction of antiplasmodial activity. Rather than depending on high throughput screening (HTS) data, molecules tested at multiple doses against blood stages of Plasmodium falciparum were used for model development. The open-access and code-free KNIME platform was used to develop a workflow to train the model on 80% of data (N ~ 12k).

View Article and Find Full Text PDF

Clinical integration of germline findings from a tumor testing precision medicine program.

BMC Cancer

January 2025

Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.

Background: Integrating germline genetic testing (GGT) recommendations from tumor testing into hereditary cancer clinics and precision oncology trials presents challenges that require multidisciplinary expertise and infrastructure. While there have been advancements in standardizing molecular tumor boards, the implementation of tumor profiling for germline-focused assessments has only recently gained momentum. However, this progress remains inconsistent across institutions, largely owing to a lack of systematic approaches for managing these findings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!