In Vivo Subacute Toxicity and Antidiabetic Effect of Aqueous Extract of .

Evid Based Complement Alternat Med

Laboratory of Physiology of Organisms, Team of Cellular and Molecular Physiopathology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, BP 32, EL Alia, 16011 Algiers, Algeria.

Published: December 2017

seeds are usually used as traditional medicine for a wide range of therapeutic purposes. To investigate the subacute toxicity of NS aqueous extract and select its lowest dose to study its antidiabetic effect. 5 AqE.NS doses (2, 6.4, 21, 33, and 60 g/Kg) were daily administered to mice by gavage. Biochemical parameters measurements and histological study of the liver and the kidney were performed after 6 weeks of supplementation. Thereafter, and after inducing diabetes by alloxan, rats were treated by 2 g/Kg of AqE.NS during 8 weeks. Metabolic parameters were measured on sera. A horizontal electrophoresis of plasmatic lipoprotein was conducted. Glycogen, total lipids, and triglycerides were measured in the liver. TBARS were evaluated on adipose tissue, liver, and pancreas. AqE.NS showed no variation in urea and albumin at the 5 doses, but hepatotoxicity from 21 g/Kg was confirmed by histopathological observations of the liver. In diabetic rats, AqE.NS significantly decreased glycemia, TG, T-cholesterol, LDL-c, and TBARS and showed a restored insulinemia and a significant increase in HDL-c. Results on the liver indicated a decrease in lipids and a possible glycogenogenesis. AqE.NS showed its safety at low doses and its evident antihyperglycemic, antihyperlipidemic, and antioxidant effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742890PMC
http://dx.doi.org/10.1155/2017/8427034DOI Listing

Publication Analysis

Top Keywords

subacute toxicity
8
aqueous extract
8
aqens
5
liver
5
vivo subacute
4
toxicity antidiabetic
4
antidiabetic aqueous
4
extract seeds
4
seeds traditional
4
traditional medicine
4

Similar Publications

Behavioral, biochemical, and molecular characterization of MPTP/p-intoxicated mice.

Exp Neurol

January 2025

Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524000, China; The Marine Biomedical Research Institute of Guangdong, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang 524000, China. Electronic address:

The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model remains the most extensively utilized animal model for Parkinson's disease (PD). Treatment regimens are classified into three categories: acute, subacute, and chronic. Among these, the MPTP with probenecid (MPTP/p)-induced chronic mouse model is favored for its capacity to sustain long-term striatal dopamine depletion, though the resultant behavioral, biochemical, and molecular alterations require further validation.

View Article and Find Full Text PDF

Background: (BC), also named Niuhuang in Chinese, is utilized as a resuscitation drug in Traditional Chinese Medicine (TCM) for the treatment of neurological disorders. Ischemic stroke (IS) is a significant global public health issue that currently lacks safe and effective therapeutic drugs. Ongoing efforts are focused on identifying effective treatment strategies from Traditional, Complementary, and Integrative Medicine.

View Article and Find Full Text PDF

possesses promising flavonoid secondary metabolites. However, translation of these compounds into clinical practice for neurological disease treatment is halted as the toxicity and safety profile of the plant extracts are yet to be determined. This study was conducted to assess the acute oral toxicity and subacute neurotoxicity that could be imposed by the flavonoid-enriched fraction (FEF) extracted from leaves, by strictly following the procedures set in Organization for Economic Co-operation and Development (OECD) Guidelines No.

View Article and Find Full Text PDF

Anti-IL-5 treatment, but not neutrophil interference, attenuates inflammation in a mixed granulocytic asthma mouse model, elicited by air pollution.

Respir Res

January 2025

Department of Respiratory Medicine, Laboratory for Translational Research in Obstructive Pulmonary Diseases, Medical Research Building (MRB) II, Ghent University Hospital, 2 Floor, Corneel Heymanslaan 10, 9000, Ghent, Belgium.

Introduction: Diesel exhaust particles (DEP) have been proven to aggravate asthma pathogenesis. We previously demonstrated that concurrent exposure to house dust mite (HDM) and DEP in mice increases both eosinophils and neutrophils in bronchoalveolar lavage fluid (BALF) and also results in higher levels of neutrophil-recruiting chemokines and neutrophil extracellular trap (NET) formation compared to sole HDM, sole DEP or saline exposure. We aimed to evaluate whether treatment with anti-IL-5 can alleviate the asthmatic features in this mixed granulocytic asthma model.

View Article and Find Full Text PDF

Subacute PM2.5 Exposure Induces Hepatic Insulin Resistance Through Inflammation and Oxidative Stress.

Int J Mol Sci

January 2025

School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China.

Epidemiological studies prove that type II diabetes, characterized by insulin resistance (IR), may be caused by fine particulate matter 2.5 (PM2.5).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!