Water regime and nitrogen (N) fertilizer are two important factors impacting greenhouse gases (GHG) emission from paddy field, whereas their effects have not been well studied in cold region. In this study, we conducted a two-year field experiment to study the impacts of water regime and N fertilizer on rice yields and GHG emissions in Harbin, China, a cold region located in high latitudes. Our results showed that intermittent irrigation significantly decreased methane (CH) emission compared with continuous flooding, however, the decrement was far lower than the global average level. The NO emissions were very small when flooded but peaked at the beginning of the disappearance of floodwater. The N fertilizer treatments increased CH emissions at low level (75kgN/ha). But both CH and NO emissions were uninfluenced at the levels of 150kgN/ha and 225kgN/ha. Rice yields increased under intermittent irrigation and were highest at the level of 150kgN/ha. From our results, we recommended that the intermittent irrigation and 150kgN/ha as the ideal water regime-nitrogen fertilizer incorporation for this area to achieve low GHG emissions without impacting rice yields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2017.06.007 | DOI Listing |
J Hazard Mater
December 2024
Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China. Electronic address:
Heavy metal contamination and pesticide residues pose significant threats to human health and ecosystems. Despite its broad applications, fluorescence imaging technology often struggles in complex ecological and biological environments due to disadvantages of background autofluorescence and low quantum yield. This study introduced a near-infrared (NIR) multifunctional "off-on-off" isophorone-based fluorescent bio-probe, DHB, characterized by a high fluorescence quantum yield (10.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China.
Rising atmospheric CO generally increases yield of indica rice, one of the two main Asian cultivated rice subspecies, more strongly than japonica rice, the other main subspecies. The molecular mechanisms driving this difference remain unclear, limiting the potential of future rice yield increases through breeding efforts. Here, we show that between-species variation in the DNR1 (DULL NITROGEN RESPONSE1) allele, a regulator of nitrate-use efficiency in rice plants, explains the divergent response to elevated atmospheric CO (eCO) conditions.
View Article and Find Full Text PDFPlant Physiol Biochem
December 2024
Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
Cold stress is one of the most serious abiotic stresses that affects the growth and yield in rice. However, the molecular mechanism by which abscisic acid (ABA) regulates plant cold stress tolerance is not yet clear. In this study, we identified a member of the OsNCED (9-cis-epoxycarotenoid dioxygenase) gene family, OsNCED5, which confers cold stress tolerance in rice.
View Article and Find Full Text PDFFunct Plant Biol
January 2025
National Institute for Genomics and Advanced Biotechnology (NIGAB), NARC, Park Road, Islamabad 45500, Pakistan.
Rice (Oryza sativa ) is a crucial staple crop worldwide, providing nutrition to more than half of the global population. Nonetheless, the sustainability of grain production is increasingly jeopardized by both biotic and abiotic stressors exacerbated by climate change, which increases the crop's rvulnerability to pests and diseases. Genome-editing by clustered regularly interspaced short palindromic repeats and CRISPR-associated Protein 9 (CRISPR-Cas9) presents a potential solution for enhancing rice productivity and resilience under climatic stress.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
The Energy and Resources Institute, Lodi Road, New Delhi, 110003, India.
The major limiting factor of photosynthesis in C3 plants is the enzyme, rubisco which inadequately distinguishes between carbon dioxide and oxygen. To overcome catalytic deficiencies of Rubisco, cyanobacteria utilize advanced protein microcompartments, called the carboxysomes which envelopes the enzymes, Rubisco and Carbonic Anhydrase (CA). These microcompartments facilitate the diffusion of bicarbonate ions which are converted to CO by CA, following in an increase in carbon flux near Rubisco boosting CO fixation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!