Purpose: To evaluate whether osteogenic matrix cell sheets can supply osteogenesis to dead bone.

Methods: Femur bone fragments (5 mm in length) were obtained from Fisher 344 rats and irradiated by a single exposure of 60 Gy to produce bones that were no longer viable. Osteogenic matrix cell sheets were created from rat bone marrow-derived stromal cells (BMSCs). After wrapping the dead bone with an osteogenic matrix cell sheet, it was subcutaneously transplanted into the back of a rat and harvested after 4 weeks. Bone formation around the dead bone was evaluated by X-ray imaging and histology. Alkaline phosphatase (ALP) and osteocalcin (OC) mRNA expression levels were measured to confirm osteogenesis of the transplanted bone. The contribution of donor cells to bone formation was assessed using the Sry gene and PKH26.

Results: After the cell sheet was transplanted together with dead bone, X-ray images showed abundant calcification around the dead bone. In contrast, no newly formed bone was seen in samples that were transplanted without the cell sheet. Histological sections also showed newly formed bone around dead bone in samples transplanted with the cell sheet, whereas many empty lacunae and no newly formed bone were observed in samples transplanted without the cell sheet. ALP and OC mRNA expression levels were significantly higher in dead bones transplanted with cell sheets than in those without a cell sheet (P < 0.01). Sry gene expression and cells derived from cell sheets labeled with PKH26 were detected in samples transplanted with a cell sheet, indicating survival of donor cells after transplantation.

Conclusion: Our study indicates that osteogenic matrix cell sheet transplantation can supply osteogenesis to dead bone.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jos.2018.01.015DOI Listing

Publication Analysis

Top Keywords

cell sheet
28
dead bone
24
osteogenic matrix
16
matrix cell
16
transplanted cell
16
bone
14
cell sheets
12
newly formed
12
formed bone
12
samples transplanted
12

Similar Publications

Mycetoma is a neglected tropical disease that predominantly affects individuals in low socioeconomic strata, primarily in tropical and subtropical regions. This case report describes a 20-year-old male student from Bahdo City, Somalia, who presented with a persistent cervical mass following a history of trauma. The patient exhibited vital signs within normal limits, and imaging studies, including ultrasound and computed tomography, revealed well-defined cystic masses.

View Article and Find Full Text PDF

Carbon Black Absorption Enhanced Fiber-Optic Photoacoustic Gas Sensing System with Ultrahigh Sensitivity.

Anal Chem

January 2025

School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.

A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.

View Article and Find Full Text PDF

Background: Even though major improvements have been made in the treatment of myeloma, the majority of patients eventually relapse or progress. Patients with multiple myeloma who relapse after initial high-dose chemotherapy with autologous stem cells have a median progression free survival up to 2-3 years, depending on risk factors such as previous remission duration. In recent years, growing evidence has suggested that allogeneic stem cell transplantation could be a promising treatment option for patients with relapsed or progressed multiple myeloma.

View Article and Find Full Text PDF

Recently, 3-D porous architecture of the composites play a key role in cell proliferation, bone regeneration, and anticancer activities. The osteoinductive and osteoconductive properties of β-TCP allow for the complete repair of numerous bone defects. Herein, β-TCP was synthesized by wet chemical precipitation route, and their 3-D porous composites with HBO and Cu nanoparticles were prepared by the solid-state reaction method with improved mechanical and biological performances.

View Article and Find Full Text PDF

Mesoporous bioactive glass (MBG) is an advanced biomaterial widely recognized for its application in bone regenerative engineering. This study synthesized an MBG powder (80 mol% SiO, 5 mol% PO, and 15 mol% CaO) using a facile sol-gel method with the non-ionic surfactant Pluronic P123, which acted as a pore-forming agent. MBGs form bioactive surfaces that facilitate HA formation, and the presence of Pluronic P123 increases the surface area and promotes HA nucleation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!