Genetic basis and phenotypic features of congenital myasthenic syndromes.

Handb Clin Neurol

Department of Neurology, Mayo Clinic College of Medicine, Rochester, MN, United States. Electronic address:

Published: August 2018

The congenital myasthenic syndromes (CMS) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more specific mechanisms. The disease proteins reside in the nerve terminal, the synaptic basal lamina, or in the postsynaptic region, or at multiple sites at the neuromuscular junction as well as in other tissues. Targeted mutation analysis by Sanger or exome sequencing has been facilitated by characteristic phenotypic features of some CMS. No fewer than 20 disease genes have been recognized to date. In one-half of the currently identified probands, the disease stems from mutations in genes encoding subunits of the muscle form of the acetylcholine receptor (CHRNA1, CHRNB, CHRNAD1, and CHRNE). In 10-14% of the probands the disease is caused by mutations in RAPSN, DOK 7, or COLQ, and in 5% by mutations in CHAT. Other less frequently identified disease genes include LAMB2, AGRN, LRP4, MUSK, GFPT1, DPAGT1, ALG2, and ALG 14 as well as SCN4A, PREPL, PLEC1, DNM2, and MTM1. Identification of the genetic basis of each CMS is important not only for genetic counseling and disease prevention but also for therapy, because therapeutic agents that benefit one type of CMS can be harmful in another.

Download full-text PDF

Source
http://dx.doi.org/10.1016/B978-0-444-64076-5.00037-5DOI Listing

Publication Analysis

Top Keywords

genetic basis
8
phenotypic features
8
congenital myasthenic
8
myasthenic syndromes
8
disease genes
8
probands disease
8
disease
6
basis phenotypic
4
features congenital
4
syndromes congenital
4

Similar Publications

Overexpression Enhances Cadmium Tolerance in .

Environ Sci Technol

December 2024

Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, Guizhou, China.

Glutathione S-transferase (GST) has been established to play an important role in regulating the responses of plants to stress, although its function and mechanisms of action in the cadmium (Cd)-tolerant remain unclear. In this study, we sought to identify a Cd-responsive gene from for functional analysis and mechanistic characterization. We accordingly identified a member of the gene family, , which plays a positive role in adaptation of to Cd.

View Article and Find Full Text PDF

Shenxian-Shengmai (SXSM) is a Chinese patent medicine used in the treatment of sick sinus syndrome (SSS). However, its active chemical compounds and the underlying molecular mechanisms remain unclear. In this study, we researched the underlying mechanisms of SXSM in treating SSS.

View Article and Find Full Text PDF

Deciphering metabolic pathways: A treasure map to therapeutic targets.

Biotechnol Notes

November 2024

Department of Animal Sciences, School of Life Sciences, Central University of Himachal Pradesh, District Kangra, Himachal Pradesh, India, 176206.

Article Synopsis
  • Indian tick typhus is an infectious disease caused by gram-negative bacteria transmitted through ticks, lice, fleas, or mites, with an increase in reported cases in India over the past decade.
  • A study identified 18 unique metabolic pathways in the bacteria, revealing 163 proteins tied to survival, virulence, and resistance, which are crucial for understanding the pathogen's behavior.
  • Out of these proteins, 88 were identified as potential therapeutic targets, with 43 showing compatibility for drug development, hinting at new strategies for treating Indian tick typhus.
View Article and Find Full Text PDF

We present a series of articles proving the existence of a previously unknown mechanism of interaction between hematopoietic stem cells and extracellular double-stranded DNA (and, in particular, double-stranded DNA of the peripheral bloodstream), which explains the possibility of emergence and fixation of genetic information contained in double-stranded DNA of extracellular origin in hematopoietic stem cells. The concept of the possibility of stochastic or targeted changes in the genome of hematopoietic stem cells is formulated based on the discovery of new, previously unknown biological properties of poorly differentiated hematopoietic precursors. The main provisions of the concept are as follows.

View Article and Find Full Text PDF

DNA repair is a most important cellular process that helps maintain the integrity of the genome and is currently considered by researchers as one of the factors determining the maximum lifespan. The central regulator of the DNA repair process is the enzyme poly(ADP-ribose)polymerase 1 (PARP1). PARP1 catalyzes the synthesis of poly(ADP-ribose) polymer (PAR) upon DNA damage using nicotinamide adenine dinucleotide (NAD+) as a substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!