(V/K) kinetic isotope effect and steady-state kinetic analysis for the transglutaminase 2 catalyzed deamidation and transamidation reactions.

Arch Biochem Biophys

Department of Biochemistry and Molecular Biology and the East Carolina Diabetes and Obesity Institute, Brody School of Medicine at East Carolina University, Greenville, NC, United States. Electronic address:

Published: April 2018

The Ca-dependent deamidation and transamidation activities of transglutaminase 2 (TG2) are important to numerous physiological and pathological processes. Herein, we have examined the steady-state kinetics and (V/K) kinetic isotope effects (KIEs) for the TG2-catalyzed deamidation and transamidation of N-Benzyloxycarbonyl-l-Glutaminylglycine (Z-Gln-Gly) using putrescine as the acyl acceptor substrate. Kinetic parameters determined from initial velocity plots are consistent with previously proposed mechanisms. Significant differences in the (V/K) KIEs on NH release determined for the deamidation (0.2%) and the transamidation (2.3%) of Z-Gln-Gly suggest the rate-limiting steps of TG2 active site acylation are dependent on the presence of the acyl acceptor. We propose a plausible mechanistic explanation where substrate-induced conformational changes may play a role in promoting catalysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2018.02.013DOI Listing

Publication Analysis

Top Keywords

deamidation transamidation
12
v/k kinetic
8
kinetic isotope
8
acyl acceptor
8
isotope steady-state
4
steady-state kinetic
4
kinetic analysis
4
analysis transglutaminase
4
transglutaminase catalyzed
4
deamidation
4

Similar Publications

Mammalian transglutaminases, a family of Ca-dependent proteins, are implicated in a variety of diseases. For example, celiac disease (CeD) is an autoimmune disorder whose pathogenesis requires transglutaminase 2 (TG2) to deamidate select glutamine residues in diet-derived gluten peptides. Deamidation involves the formation of transient γ-glutamyl thioester intermediates.

View Article and Find Full Text PDF

Unlabelled: In celiac disease, intestinal transglutaminase (TG2) produces immunogenic peptides by deamidation of gluten proteins. These products drive the celiac immune response. We have previously identified an interaction between gliadin and a food additive, E304i, which prevents gliadin processing (both deamidation and transamidation) by TG2, .

View Article and Find Full Text PDF

With the improved knowledge of gluten-related disorders, especially celiac disease (CD), the market of gluten-free food is growing. However, the current gluten-free diet still presents challenges in terms of nutrition, acceptability, and cost due to the absence of gluten. It is important to note that gluten-related allergies or sensitivities have different underlying causes.

View Article and Find Full Text PDF

Transglutaminase 3 (TG3), the autoantigen of dermatitis herpetiformis (DH), is a calcium dependent enzyme that targets glutamine residues in polypeptides for either transamidation or deamidation modifications. To become catalytically active TG3 requires proteolytic cleavage between the core domain and two C-terminal β-barrels (C1C2). Here, we report four X-ray crystal structures representing inactive and active conformations of human TG3 in complex with a TG3-specific Fab fragment of a DH patient derived antibody.

View Article and Find Full Text PDF

Type 2 transglutaminase (TG2) is the main autoantigen in coeliac disease (CD), a widespread inflammatory enteropathy caused by the ingestion of gluten-containing cereals in genetically predisposed individuals. As a consequence, serum antibodies to TG2 represent a very useful marker in CD diagnosis. However, TG2 is also an important player in CD pathogenesis, for its ability to deamidate some Gln residues of gluten peptides, which become more immunogenic in CD intestinal mucosa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!