Both calpain-2 (CALP2) and tumor necrosis factor-α (TNF-α) contribute to persistent bilateral hypersensitivity in animals subjected to L5 ventral root transection (L5-VRT), a model of selective motor fiber injury without sensory nerve damage. However, specific upstream mechanisms regulating TNF-α overexpression and possible relationships linking CALP2 and TNF-α have not yet been investigated in this model. We examined changes in CALP2 and TNF-α protein levels and alterations in bilateral mechanical threshold within 24 h following L5-VRT model injury. We observed robust elevation of CALP2 and TNF-α in bilateral dorsal root ganglias (DRGs) and bilateral spinal cord neurons. CALP2 and TNF-α protein induction by L5-VRT were significantly inhibited by pretreatment using the calpain inhibitor MDL28170. Administration of CALP2 to rats without nerve injury further supported a role of CALP2 in the regulation of TNF-α expression. Although clinical trials of calpain inhibition therapy for alleviation of neuropathic pain induced by motor nerve injury have not yet shown success, our observations linking CALP2 and TNF-α provide a framework of a systems' approach based perspective for treating neuropathic pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroscience.2018.02.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!