Unlabelled: The human HtrA3 protease is involved in placentation, mitochondrial homeostasis, stimulation of apoptosis and proposed to be a tumor suppressor. Molecular mechanisms of the HtrA3 functions are poorly understood and knowledge concerning its cellular targets is very limited. There are two HtrA3 isoforms, the long (HtrA3L) and short (HtrA3S). Upon stress, their N-terminal domains are removed, resulting in the more active ΔN-HtrA3. By pull down and mass spectrometry techniques, we identified a panel of putative ΔN-HtrA3L/S substrates. We confirmed that ΔN-HtrA3L/S formed complexes with actin, β-tubulin, vimentin and TCP1α in vitro and in a cell and partially co-localized with the actin and vimentin filaments, microtubules and TCP1α in a cell. In vitro, both isoforms cleaved the cytoskeleton proteins, promoted tubulin polymerization and displayed chaperone-like activity, with ΔN-HtrA3S being more efficient in proteolysis and ΔN-HtrA3L - in polymerization. TCP1α, essential for the actin and tubulin folding, was directly bound by the ΔN-HtrA3L/S but not cleaved. These results indicate that actin, β-tubulin, vimentin, and TCP1α are HtrA3 cellular partners and suggest that HtrA3 may influence cytoskeleton dynamics. They also suggest different roles of the HtrA3 isoforms and a possibility that HtrA3 protease may also function as a co-chaperone.

Significance: The HtrA3 protease stimulates apoptosis and is proposed to be a tumor suppressor and a therapeutic target, however little is known about its function at the molecular level and very few HtrA3 physiological substrates have been identified so far. Furthermore, HtrA3 is the only member of the HtrA family of proteins which, apart from the long isoform possessing the PD and PDZ domains (HtrA3L), has a short isoform (HtrA3S) lacking the PDZ domain. In this work we identified a large panel (about 150) of the tentative HtrA3L/S cellular partners which provides a good basis for further research concerning the HtrA3 function. We have shown that the cytoskeleton proteins actin, β-tubulin and vimentin, and the TCP1α chaperonin are cellular partners of both HtrA3 isoforms. Our findings indicate that HtrA3 may promote destabilization of the actin and vimentin cytoskeleton and suggest that it may influence the dynamics of the microtubule network, with the HtrA3S being more efficient in cytoskeleton protein cleavage and HtrA3L - in tubulin polymerization. Also, we have shown for the first time that HtrA3 has a chaperone-like, holdase activity in vitro - activity typical for co-chaperone proteins. The proposed HtrA3 influence on the cytoskeleton dynamics may be one of the ways in which HtrA3 promotes cell death and affects cancerogenesis. We believe that the results of this study provide a new insight into the role of HtrA3 in a cell and further confirm the notion that HtrA3 should be considered as a target of new anti-cancer therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2018.02.022DOI Listing

Publication Analysis

Top Keywords

htra3
19
cytoskeleton proteins
12
htra3 protease
12
htra3 isoforms
12
actin β-tubulin
12
β-tubulin vimentin
12
vimentin tcp1α
12
cellular partners
12
htra3 cellular
8
tcp1α chaperonin
8

Similar Publications

Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression.

Matrix Biol

December 2024

Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland. Electronic address:

The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals.

View Article and Find Full Text PDF

Mesenchymal stem cell (MSC) migration determines the healing capacity of bone and is crucial in promoting bone regeneration. Migration of MSCs is highly dependent on degradation of extracellular matrix by proteolytic enzymes. However, the underlying mechanisms of how enzymolysis paves the way for MSCs to migrate from their niche to the defect area is still not fully understood.

View Article and Find Full Text PDF

Purpose: HtrA1, HtrA2, HtrA3 and HtrA4 appear to be involved in the development of pathologies such as cancer. This systematic review reports the results of a literature search performed to compare the expression of HtrA family genes and proteins in cancer versus non-cancer tissues and cell lines, assess relationships between HtrA expression and cancer clinical features in cancer, and analyse the molecular mechanism, by which HtrA family affects cancer.

Methods: The literature search was conducted according to the PRISMA statement among four databases (PubMed, Web of Science, Embase and Scopus).

View Article and Find Full Text PDF

African swine fever (ASF) is a global threat to animal health and food security. ASF is typically controlled by strict biosecurity, rapid diagnosis, and culling of affected herds. Much progress has been made in developing modified live virus vaccines against ASF.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the link between immune-related genes and the tumor microenvironment in hepatocellular carcinoma (HCC), aiming to create a new prognostic survival model based on seven identified genes.
  • Using data from multiple cancer genome databases, researchers developed a weighted gene coexpression network and validated their model, highlighting the importance of tumor mutation burden (TMB) and immune factors in HCC survival predictions.
  • The findings revealed significant differences in immune scores between high-risk and low-risk groups, with certain immune checkpoints identified as related to the risk score, suggesting new potential targets for immunotherapy and chemotherapy in HCC treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!