A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inorganic Hg toxicity in plants: A comparison of different genotoxic parameters. | LitMetric

Inorganic Hg toxicity in plants: A comparison of different genotoxic parameters.

Plant Physiol Biochem

iB(2)Lab, Department of Biology, Faculty of Sciences, LAQV/REQUIMTE, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal. Electronic address:

Published: April 2018

Inorganic Mercury (Hg) contamination persists an environmental problem, but its cyto- and genotoxicity in plants remains yet unquantified. To determine the extent of Hg-induced cyto- and genotoxicity, and assess most sensitive endpoints in plants, Pisum sativum L. seedlings were exposed for 14 days to different HgCl concentrations up to 100 μM. Shoots and roots from hydroponic exposure presented growth impairment and/or morphological disorders for doses >1 μM, being the roots more sensitive. Plant growth, ploidy changes, clastogenicity (HPCV), cell cycle dynamics (G-S-G), Comet-tail moment (TM), Comet-TD, Mitotic-index (MI) and cell proliferation index (CPI) were used to evaluate Hg-induced cyto/genotoxicity. Both leaf and root DNA-ploidy levels, assessed by flow cytometry (FCM), remained unaltered after exposure. Root cell cycle impairment occurred at lower doses (≥1 μM) than structural DNA damages (≥10 μM). Cytostatic effects depended on the Hg concentration, with delays during S-phase at lower doses, and arrests at G at higher ones. This arrest was paralleled with decreases of both mitotic index (MI) and cell proliferation index (CPI). DNA fragmentation, assessed by the Comet assay parameters of TD and TM, could be visualized for conditions ≥10 μM, while FCM-clastogenic parameter (FPCV) and micronuclei (MNC) were only altered in roots exposed to 100 μM. We demonstrate that inorganic-Hg induced cytostaticity is detectable even at 1 μM (a value found in contaminated sites), while structural DNA breaks/damage are only visualized in plants at concentrations ≥10 μM. We also demonstrate that among the different techniques tested for cyto- and genotoxicity, TD and TM Comet endpoints were more sensitive than FPCV or MNC. Regarding cytostatic effects, cell cycle analysis by FCM, including the difference in % cell cycle phases and CPI were more sensitive than MI or MNC frequency. Our data contribute to better understand Hg cyto- and genotoxicity in plants and to understand the information and sensitivity provided by each of the genotoxic techniques used.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2018.02.015DOI Listing

Publication Analysis

Top Keywords

cyto- genotoxicity
16
cell cycle
16
genotoxicity plants
8
cell proliferation
8
proliferation cpi
8
lower doses
8
structural dna
8
cytostatic effects
8
cell
6
plants
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!