The antioxidant activity of a prenyl flavonoid alters its antifungal toxicity on Candida albicans biofilms.

Food Chem Toxicol

Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas Físicas y Naturales, Cátedra de Microbiología, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Instituto Multidisciplinario de Biología Vegetal (IMBIV), Av. Vélez Sarsfield 299, Córdoba, Argentina. Electronic address:

Published: April 2018

The antioxidant effect of 8PP, a prenylflavonoid from Dalea elegans on Candida albicans biofilms, was investigated. We previously reported that sensitive (SCa) and resistant C. albicans (RCa) biofilms were strongly inhibited by this compound, in a dose-depending manner (50 μM-100 μM), with a prooxidant effect leading to accumulation of endogenous oxidative metabolites and increased antioxidant defenses. In this work, the antifungal activity of high concentrations of 8PP (200-1000 μM), the cellular stress imbalance and the architecture of biofilms were evaluated. Biofilms were studied by crystal violet and confocal scanning laser microscopy (CSLM) with COMSTAT analysis. Superoxide anion radical, the activity of the superoxide dismutase and the total antioxidant capacity were measured. Intracellular ROS were detected by a DCFH-DA and visualized by CSLM; reactive nitrogen intermediates by Griess. An antioxidant effect was detected at 1000 μM and levels of oxidant metabolites remained low, with major changes in the SCa. COMSTAT analysis showed that biofilms treated with higher concentrations exhibited different diffusion distances with altered topographic surface architectures, voids, channels and pores that could change the flow inside the matrix of biofilms. We demonstrate for first time, a concentration-dependent antioxidant action of 8PP, which can alter its antifungal activity on biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2018.02.042DOI Listing

Publication Analysis

Top Keywords

candida albicans
8
biofilms
8
albicans biofilms
8
antifungal activity
8
comstat analysis
8
antioxidant
6
antioxidant activity
4
activity prenyl
4
prenyl flavonoid
4
flavonoid alters
4

Similar Publications

Background: Vulvovaginal candidiasis (VVC), caused primarily by Candida albicans, is currently treated with either prescription or over-the-counter antifungal drugs, often with variable efficacy and relapses. New and improved therapeutic strategies, including drug-free treatment alternatives, are needed. Upon overgrowth or environmental triggers, C.

View Article and Find Full Text PDF

Identification of Antigens Recognized by Murine Intestinal IgAs by a Gel-Independent Immunoproteomic Approach.

J Proteome Res

January 2025

Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.

As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.

View Article and Find Full Text PDF

Microbial pathogens generate extracellular vesicles (EVs) for intercellular communication and quorum sensing. Microbial EVs also induce inflammatory pathways within host innate immune cells. We previously demonstrated that EVs secreted by trigger type I interferon signaling in host cells specifically via the cGAS-STING innate immune signaling pathway.

View Article and Find Full Text PDF

A Novel and Robust Method for Investigating Fungal Biofilm.

Bio Protoc

January 2025

Laboratory of Protein Translation and Fungal Pathogenesis, Regional Centre for Biotechnology, Faridabad, India.

, labeled an urgent threat by the CDC, shows significant resilience to treatments and disinfectants via biofilm formation, complicating treatment/disease management. The inconsistencies in biofilm architecture observed across studies hinder the understanding of its role in pathogenesis. Our novel in vitro technique cultivates biofilms on gelatin-coated coverslips, reliably producing multilayer biofilms with extracellular polymeric substances (EPS).

View Article and Find Full Text PDF

Background: There is ample evidence showing the development of nystatin-resistant strains in patients undergoing malignancy treatment. Amphotericin B is a polyene antifungal drug that combines with ergosterol to cause cell death and is more effective on fungal species than routine antifungals such as nystatin. This study aimed to compare the effect of nystatin and amphotericin B on fungal species isolated from patients before and during head-and-neck radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!