D-Amino acid-containing peptides (DAACPs) in animals are a class of bioactive molecules formed via the posttranslational modification of peptides consisting of all-L-amino acid residues. Amino acid residue isomerization greatly impacts the function of the resulting DAACP. However, because isomerization does not change the peptide's mass, this modification is difficult to detect by most mass spectrometry-based peptidomic approaches. Here we describe a method for the identification of DAACPs that can be used to systematically survey peptides extracted from a tissue sample in a non-targeted manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849432PMC
http://dx.doi.org/10.1007/978-1-4939-7537-2_7DOI Listing

Publication Analysis

Top Keywords

d-amino acid-containing
8
acid-containing peptides
8
amino acid
8
non-targeted identification
4
identification d-amino
4
peptides
4
peptides enzymatic
4
enzymatic screening
4
screening chiral
4
chiral amino
4

Similar Publications

Cyclin-dependent kinase 9 (CDK9) plays a pivotal role in promoting oncogenic transcriptional pathways, significantly contributing to the development and progression of cancer. Given the unique biostability of d-amino acid, the development of d-amino acid-containing peptides (DAACPs) is a promising strategy for cancer treatment. Currently, no DAACPs inhibitor targeting CDK9-cyclin T1 have been reported.

View Article and Find Full Text PDF

Discovery, Biosynthesis, and Characterization of Rodencin, a Two-Component Lanthipeptide, Harboring d-Amino Acids Introduced by the Unusual Dehydrogenase RodJ.

J Nat Prod

October 2024

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen 9747 AG The Netherlands.

Lanthipeptides, a group of ribosomally synthesized and post-translationally modified peptides (RiPPs), exhibit diverse structures and bioactivities. Their biosynthetic enzymes serve as valuable tools for peptide bioengineering. Here, we report a class II lanthipeptide biosynthetic gene cluster in a strain, driving the biosynthesis of a two-component lanthipeptide, termed rodencin, featured by the presence of two different d-amino acids, i.

View Article and Find Full Text PDF

A novel series of metazoan L/D peptide isomerases.

J Biol Chem

July 2024

Beckman Institute, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Molecular and Integrative Physiology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA; Department of Chemistry, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA. Electronic address:

The function of endogenous cell-cell signaling peptides relies on their interactions with cognate receptors, which in turn are influenced by the peptides' structures, necessitating a comprehensive understanding of the suite of post-translational modifications of the peptide. Herein, we report the initial characterization of putative peptide isomerase enzymes extracted from R. norvegicus, A.

View Article and Find Full Text PDF

D-amino acid-containing peptides (DAACPs) in animals are a class of bioactive molecules formed via the posttranslational modification of peptides consisting of all-L-amino acid residues. Amino acid residue isomerization greatly impacts the function of the resulting DAACP. However, because isomerization does not change the peptide's mass, this modification is difficult to detect by most mass spectrometry-based peptidomic approaches.

View Article and Find Full Text PDF

D-amino acid-containing peptides (DAACPs) occur in biological and artificial environments. Since the importance of DAACPs has been recognized, various mass spectrometry-based analytical approaches have been developed. However, the capability of higher-energy collisional dissociation (HCD) fragmentation to characterize DAACP sites has not been evaluated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!