The effect of the SNP g.18475 A>G in the 3'UTR of NCF4 on mastitis susceptibility in dairy cattle.

Cell Stress Chaperones

Dairy Cattle Research Center, Shandong Academy of Agricultural Sciences, No. 159 North of Industry Road, Jinan, Shandong, 250131, China.

Published: May 2018

Neutrophil cytosolic factor 4 (NCF4) is a member of the nicotinamide adenine dinucleotide phosphate oxidase subunit. This protein functions as an essential factor in the host defense against the progression of bacterial infection. To explore the variability of the NCF4 gene and the susceptibility of cows to mastitis, NCF4 functional single nucleotide polymorphism (SNP) of the 3' untranslated region (3'UTR) and its targeted microRNA (miRNA) were identified. One SNP g.18475 A>G in the 3'UTR of NCF4 was found within the binding seed region of bta-miR-2426. We constructed two recombinant pMIR-REPORT™ vectors with the A or G allele in the g.18475 locus and transiently co-transfected the vectors in human embryo kidney 293T (HEK 293T) cells, along with bta-miR-2426 mimics. A luciferase assay indicated that this SNP affects the binding of NCF4 and bta-miR-2426. In addition, the association analysis results showed that cows with the GG genotype in SNP g.18475 A>G had a relatively lower SCS value than cows with the AA genotype. Finally, quantitative real-time PCR (RT-qPCR) results showed that the cows with genotype GG had a relatively higher expression of NCF4 mRNA compared to the cows with genotype AA. NCF4 expression was regulated by the miRNA-mRNA interaction mechanism, and an important role for NCF4 in mastitis susceptibility in dairy cow was suggested.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904081PMC
http://dx.doi.org/10.1007/s12192-017-0848-zDOI Listing

Publication Analysis

Top Keywords

cows genotype
16
snp g18475
12
g18475 a>g
12
ncf4
9
a>g 3'utr
8
3'utr ncf4
8
ncf4 mastitis
8
mastitis susceptibility
8
susceptibility dairy
8
snp
5

Similar Publications

A Recursive Model Approach to Include Epigenetic Effects in Genetic Evaluations Using Simulated DNA Methylation Effects.

J Anim Breed Genet

January 2025

Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Madrid, Spain.

The advancement of epigenetics has highlighted DNA methylation as an intermediate-omic influencing gene regulation and phenotypic expression. With emerging technologies enabling the large-scale and affordable capture of methylation data, there is growing interest in integrating this information into genetic evaluation models for animal breeding. This study used methylome information from six dairy cows to simulate the methylation profile of 13,183 genotyped animals.

View Article and Find Full Text PDF

Molecular surveillance of FMD epidemiology is a fundamental tool for advancing our understanding of virus biology, monitoring virus evolution, and guiding vaccine design. The accessibility of genetic data will facilitate a more comprehensive delineation of FMDV phylogeny on a global scale. In this study, we investigated the FMDV strains circulating in Russia during the 2013-2014 period in geographically distant regions utilizing whole genome sequencing followed by maximum-likelihood phylogenetic reconstruction of whole genome and VP1 gene sequences.

View Article and Find Full Text PDF

Prevalent and Drug-Resistant Phenotypes and Genotypes of Isolated from Healthy Cow's Milk of Large-Scale Dairy Farms in China.

Int J Mol Sci

January 2025

Ministry of Agriculture and Rural Affairs-Laboratory of Quality and Safety Risk Assessment for Agro-Products, Key Laboratory of Agro-Products Quality and Safety of Xinjiang, Institute of Quality Standards & Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China.

is a common cause of mastitis in dairy cows, which results in large economic losses to the livestock industry. The aim of this study was to investigate the prevalence of in raw milk in China, assess antimicrobial drug susceptibility, and identify key antibiotic resistance genes carried by the isolates. In total, 350 raw milk samples were collected from large-scale farms in 16 provinces and cities in six regions of China to assess the resistance of .

View Article and Find Full Text PDF

Although is a key cause of subclinical mastitis in Danish dairy cows, its sensitivity to antimicrobials remains unexplored. Here, we analyzed sixty isolates derived from 42 dairy cows across six conventional dairy herds in Denmark. Phenotypic resistance was measured by antimicrobial susceptibility testing and minimum inhibitory concentration (MIC) analysis, and genotypic resistance was examined through whole-genome sequencing and identification of antimicrobial resistance genes (ARGs).

View Article and Find Full Text PDF

Application of Genomic Selection in Beef Cattle Disease Prevention.

Animals (Basel)

January 2025

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA.

Genomic applications in beef cattle disease prevention have gained traction in recent years, offering new strategies for improving herd health and reducing economic losses in the livestock industry. Advances in genomics, including identification of genetic markers linked to disease resistance, provide powerful tools for early detection, selection, and management of cattle resistant to infectious diseases. By incorporating genomic technologies such as whole-genome sequencing, genotyping, and transcriptomics, researchers can identify specific genetic variants associated with resistance to pathogens like bovine respiratory disease and Johne's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!