AI Article Synopsis

  • - The study focuses on dissimilatory perchlorate reduction, an anaerobic process affected by metabolic interactions, and aims to identify uncultivated populations involved in this process.
  • - Researchers recovered 48 draft genomes from perchlorate-reducing sediment enrichments and discovered a novel gene cluster for perchlorate reduction, indicating gene exchange through mobile elements like plasmids.
  • - Most genomes lacked perchlorate reduction genes, suggesting that other microbial populations, such as chlorate-reducing ones, dominate the communities, highlighting the complex metabolic interactions and genetic diversity in these ecosystems.

Article Abstract

Dissimilatory perchlorate reduction is an anaerobic respiratory pathway that in communities might be influenced by metabolic interactions. Because the genes for perchlorate reduction are horizontally transferred, previous studies have been unable to identify uncultivated perchlorate-reducing populations. Here we recovered metagenome-assembled genomes from perchlorate-reducing sediment enrichments and employed a manual scaffolding approach to reconstruct gene clusters for perchlorate reduction found within mobile genetic elements. De novo assembly and binning of four enriched communities yielded 48 total draft genomes. In addition to canonical perchlorate reduction gene clusters and taxa, a new type of gene cluster with an alternative perchlorate reductase was identified. Phylogenetic analysis indicated past exchange between these gene clusters, and the presence of plasmids with either gene cluster shows that the potential for gene transfer via plasmid persisted throughout enrichment. However, a majority of genomes in each community lacked perchlorate reduction genes. Putative chlorate-reducing or sulfur-reducing populations were dominant in most communities, supporting the hypothesis that metabolic interactions might result from perchlorate reduction intermediates and byproducts. Other populations included a novel phylum-level lineage (Ca. Muirbacteria) and epibiotic prokaryotes with no known role in perchlorate reduction. These results reveal unexpected genetic diversity, suggest that perchlorate-reducing communities involve substantial metabolic interactions, and encourage expanded strategies to further understand the evolution and ecology of this metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955982PMC
http://dx.doi.org/10.1038/s41396-018-0081-5DOI Listing

Publication Analysis

Top Keywords

perchlorate reduction
28
metabolic interactions
16
gene clusters
12
diversity perchlorate-reducing
8
perchlorate-reducing communities
8
perchlorate
8
gene cluster
8
reduction
7
gene
6
communities
5

Similar Publications

Hydride Formation and Decomposition on Cu(111) in HClO.

J Am Chem Soc

January 2025

Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.

Cu electrodeposition and the electrocatalysis of hydrogenation reactions thereupon involve significant interactions with adsorbed hydrogen. Electrochemical mass spectrometry (EC-MS) is used to explore the formation and decomposition of surface hydride on Cu(111) in 0.1 mol L HClO.

View Article and Find Full Text PDF

Thyroid hormones (THs) require iodine for biosynthesis and play critical roles in brain development. Perchlorate is an environmental contaminant that reduces serum THs by blocking the uptake of iodine from the blood to the thyroid gland. Using a pregnant rodent model, we examined the impact of maternal exposure to perchlorate under conditions of dietary iodine deficiency (ID) on the brain and behavior of offspring.

View Article and Find Full Text PDF

One very unique feature of oxidorhenium(v) complexes is their dual catalytic activity in both reduction of stable oxyanions like perchlorate ClO and nitrate NO as well as epoxidation of olefins. In our ongoing research efforts, we were interested to study how an electron-withdrawing ligand would affect both these catalytic reactions. Hence, we synthesized the novel bidentate dimethyloxazoline-dichlorophenol ligand HL1 and synthesized oxidorhenium(v) complex [ReOCl(L1)] (1).

View Article and Find Full Text PDF

Facile Preparation of Ultrafine Porous Copper Powders for Accelerating the Thermal Decomposition of Ammonium Perchlorate.

Materials (Basel)

November 2024

National Special Superfine Powder Engineering Research Center of China, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

In this study, we innovatively proposed a facile method to synthesize ultrafine porous copper (Cu) powders under mild conditions by utilizing the reduction properties of reduced iron (Fe) powders. The results showed that Cu was easily reduced to Cu at 1.05-1.

View Article and Find Full Text PDF

Munition constituents (MC) in stormwater runoff have the potential to move these pollutants into receiving bodies at military installations. Here we present further evaluation of a passive and sustainable biofilter technology for removal of dissolved MC from simulated surface runoff by combined sorption-biodegradation processes under dynamic flow conditions. Columns were packed with MC sorbents Sphagnum peat moss and cationized (CAT) pine shavings with and without wood-based biochar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!