Terpenoids are a major component of maize () chemical defenses that mediate responses to herbivores, pathogens, and other environmental challenges. Here, we describe the biosynthesis and elicited production of a class of maize diterpenoids, named dolabralexins. Dolabralexin biosynthesis involves the sequential activity of two diterpene synthases, -COPALYL DIPHOSPHATE SYNTHASE (ZmAN2) and KAURENE SYNTHASE-LIKE4 (ZmKSL4). Together, ZmAN2 and ZmKSL4 form the diterpene hydrocarbon dolabradiene. In addition, we biochemically characterized a cytochrome P450 monooxygenase, ZmCYP71Z16, which catalyzes the oxygenation of dolabradiene to yield the epoxides 15,16-epoxydolabrene (epoxydolabrene) and 3β-hydroxy-15,16-epoxydolabrene (epoxydolabranol). The absence of dolabradiene and epoxydolabranol in mutants under elicited conditions confirmed the in vivo biosynthetic requirement of ZmAN2. Combined mass spectrometry and NMR experiments demonstrated that much of the epoxydolabranol is further converted into 3β,15,16-trihydroxydolabrene (trihydroxydolabrene). Metabolite profiling of field-grown maize root tissues indicated that dolabralexin biosynthesis is widespread across common maize cultivars, with trihydroxydolabrene as the predominant diterpenoid. Oxidative stress induced dolabralexin accumulation and transcript expression of and in root tissues, and metabolite and transcript accumulation were up-regulated in response to elicitation with the fungal pathogens and Consistently, epoxydolabranol significantly inhibited the growth of both pathogens in vitro at 10 µg mL, while trihydroxydolabrene-mediated inhibition was specific to These findings suggest that dolabralexins have defense-related roles in maize stress interactions and expand the known chemical space of diterpenoid defenses as genetic targets for understanding and ultimately improving maize resilience.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5884620 | PMC |
http://dx.doi.org/10.1104/pp.17.01351 | DOI Listing |
Plant Physiol
May 2023
Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA.
Two major groups of specialized metabolites in maize (Zea mays), termed kauralexins and dolabralexins, serve as known or predicted diterpenoid defenses against pathogens, herbivores, and other environmental stressors. To consider the physiological roles of the recently discovered dolabralexin pathway, we examined dolabralexin structural diversity, tissue-specificity, and stress-elicited production in a defined biosynthetic pathway mutant. Metabolomics analyses support a larger number of dolabralexin pathway products than previously known.
View Article and Find Full Text PDFPlant Mol Biol
August 2019
Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, 611130, China.
CYP71Z18 exhibited plastic substrate specificity to catalyze oxidation of multiple rice diterpenes and elevated chemical defense against the blast fungus in transgenic rice. Diversified plant specialized metabolism relies on corresponding biosynthetic enzymes with differential substrate specificity. CYP71Z18 catalyzed formation of maize phytoalexins including zealexin A1, the sesquiterpenoid phytoalexin, and diterpenoid phytoalexin dolabralexin, indicating catalytic promiscuity on different terpene substrates.
View Article and Find Full Text PDFFront Plant Sci
October 2018
Department of Plant Biology, University of California, Davis, Davis, CA, United States.
As a major staple food, maize () is critical to food security. Shifting environmental pressures increasingly hamper crop defense capacities, causing expanded harvest loss. Specialized labdane-type diterpenoids are key components of maize chemical defense and ecological adaptation.
View Article and Find Full Text PDFPlant Physiol
April 2018
Department of Plant Biology, University of California, Davis, California
Terpenoids are a major component of maize () chemical defenses that mediate responses to herbivores, pathogens, and other environmental challenges. Here, we describe the biosynthesis and elicited production of a class of maize diterpenoids, named dolabralexins. Dolabralexin biosynthesis involves the sequential activity of two diterpene synthases, -COPALYL DIPHOSPHATE SYNTHASE (ZmAN2) and KAURENE SYNTHASE-LIKE4 (ZmKSL4).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!