Refining the tethering of American oysters (Crassostrea virginica) to measure the effects of two environmental stressors.

Mar Pollut Bull

Department of Biology, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada. Electronic address:

Published: February 2018

Tethering assays, or the physical restraint of test organisms, has been used in the past to measure selected organisms' response to stressors while removing the observer from the experimental setting. Although informative for monitoring and hypothesis testing, these assays often used microfilaments that have been found to be too invasive or prone to biases given their effects on test organisms' behavior. Here, we describe a new variation of tethering using American oysters (Crassostrea virginica) and illustrate its use in the study of their mortality rates as a result of two stressors: siltation and predation by a non-indigenous species. Our protocol identified a resistant (non-toxic) glue that could be used to attach oysters to stone slabs, thus partially mimicking the natural cementation of the shell to natural substrates. This variation of tethering was harmless and maintained oysters' body position and natural ability to filter feed. Using tethered oysters in separate two-week field cage experiments, we also show how siltation and predation by a non-indigenous species (the European green crab, Carcinus maenas), caused a gradual, easily measurable increase in oyster mortality rates. We argue that this variation of tethering is a cost-effective and advantageous way to monitor or test the effects of these and other stressors on oysters and similar species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2017.12.007DOI Listing

Publication Analysis

Top Keywords

variation tethering
12
tethering american
8
american oysters
8
oysters crassostrea
8
crassostrea virginica
8
mortality rates
8
siltation predation
8
predation non-indigenous
8
non-indigenous species
8
oysters
5

Similar Publications

Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.

View Article and Find Full Text PDF

Enhanced flight performance in hoverfly migrants.

iScience

December 2024

Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, UK.

Article Synopsis
  • Many animals, including the marmalade hoverfly, migrate seasonally, which affects their flight characteristics.
  • The study found that migratory hoverflies can fly twice as far as non-migratory ones, with body condition playing a crucial role.
  • Hoverflies with more fat can fly almost five times farther than those with less fat, highlighting the significance of energy stores for long-distance migration.
View Article and Find Full Text PDF

Stereoselective Synthesis of (±)-Tetraponerine-2 and -4 via the Gold(I)-Catalyzed Intramolecular Dehydrative Amination of Allylic Alcohols.

J Org Chem

December 2024

College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-Gu, Seoul 03760, Republic of Korea.

The concise and efficient total synthesis of (±)-tetraponerine-2 () and (±)-tetraponerine-4 () was achieved in 9% and 14% overall yield, respectively. The key step included the diastereoselective gold(I)-catalyzed intramolecular dehydrative amination of an allylic alcohol-tethered sulfamide to produce the 1,3-diamine moiety. The resulting olefinic side chain was then elaborated by cross-metathesis and cyclized to a five-membered pyrrolidine or a six-membered piperidine ring by intramolecular Mitsunobu -alkylation.

View Article and Find Full Text PDF

Induction of territorial dominance and subordination behaviors in laboratory mice.

Sci Rep

November 2024

Epigenetics & Neurobiology Unit, EMBL Rome, European Molecular Biology Laboratory, Via Ramarini 32, 00015, Monterotondo, RM, Italy.

Territorial behaviors comprise a set of coordinated actions and response patterns found across animal species that promote the exclusive access to resources. House mice are highly territorial with a subset of males consistently attacking and chasing competing males to expel them from their territories and performing urine marking behaviors to signal the extent of their territories. Natural variation in territorial behaviors within a mouse colony leads to the formation of dominance hierarchies in which subordinate males can reside within the territory of a dominant male.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the acidity of a carboxylic acid group changes when it’s connected to a pyridinium cation through alkyl linkages of varying lengths.
  • The researchers use cryogenic ion spectroscopy to measure the frequency changes of the acid’s OH stretches and find that shorter linkages increase acidity significantly, but this effect decreases with chain lengths around 4-5.
  • Surprisingly, while OH stretches show a red shift, indicating increased acidity, the CO stretch shows a blue shift as the linkers get shorter, suggesting that the nearby cationic charge affects electron density differently than expected.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!