Free space optical communications utilizing orbital angular momentum beams have recently emerged as a new technique for communications with potential for increased channel capacity. Turbulence due to changes in the index of refraction emanating from temperature, humidity, and air flow patterns, however, add nonlinear effects to the received patterns, thus making the demultiplexing task more difficult. Deep learning techniques have been previously been applied to solve the demultiplexing problem as an image classification task. Here we make use of a newly developed theory suggesting a link between image turbulence and photon transport through the continuity equation to describe a method that utilizes a "shallow" learning method instead. The decoding technique is tested and compared against previous approaches using deep convolutional neural networks. Results show that the new method can obtain similar classification accuracies (bit error ratio) at a small fraction (1/90) of the computational cost, thus enabling higher bit rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.26.004004 | DOI Listing |
Nano Lett
January 2025
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China.
Exciton emitters in two-dimensional monolayer transition-metal dichalcogenides (TMDs) provide a boulevard for the emerging optoelectronic field, ranging from miniaturized light-emitting diodes to quantum emitters and optical communications. However, the low quantum efficiency from limited light-matter interactions and harmful substrate effects seriously hinders their applications. In this work, we achieve a ∼438-fold exciton photoluminescence enhancement by constructing a Fabry-Pérot cavity consisting of monolayer WS and a micron-scale hole on the SiO/Si substrate.
View Article and Find Full Text PDFNat Neurosci
January 2025
School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan.
Microglia-resident immune cells in the central nervous system-undergo morphological and functional changes in response to signals from the local environment and mature into various homeostatic states. However, niche signals underlying microglial differentiation and maturation remain unknown. Here, we show that neuronal micronuclei (MN) transfer to microglia, which is followed by changing microglial characteristics during the postnatal period.
View Article and Find Full Text PDFPsychon Bull Rev
January 2025
Centre de Recherche en Psychologie et Neuroscience, CNRS & Aix-Marseille University, Marseille, France.
A recent study (Wen et al., Journal of Experimental Psychology: Human Perception and Performance, 50: 934-941, 2024) found no influence of relative word-length on transposed-word effects. However, following the tradition of prior research on effects of transposed words during sentence reading, the transposed words in that study were adjacent words (words at positions 2 and 3 or 3 and 4 in five-word sequences).
View Article and Find Full Text PDFBehav Res Methods
January 2025
Department of Sport and Health Sciences, University of Potsdam, Potsdam, Germany.
We introduce a sentence corpus with eye-movement data in traditional Chinese (TC), based on the original Beijing Sentence Corpus (BSC) in simplified Chinese (SC). The most noticeable difference between TC and SC character sets is their visual complexity. There are reaction time corpora in isolated TC character/word lexical decision and naming tasks.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Shiraz university of technology, Shiraz, Iran.
A novel helically twisted photonic crystal fiber (PCF) is designed and proposed for sensing toxic gases with refractive indices ranging from 1.00 to 1.08.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!