Aminopeptidase N (APN) represents a class of zinc metallopeptidases with broad substrate specifity. This enzyme is involved in control of angioneogenesis in cancer and microvascular conditions. It also serves as a superficial cellular receptor that enables attachment of some viruses including coronaviruses to the host cell. APN takes part also in metabolism of some important neuropeptides. That is why APN can be a promising therapeutic target and compounds which influence its activity interesting potential drugs. Here, synthesis of compounds which in most contain 3-phenoxypropan-1,2 diol moiety and evaluation of their inhibition activity against APN is described. 4-[1-, 2- and 3-(Nitrophenoxymethyl)]-[1,3,2]dioxaborolan-2-ols are novel compounds which have never been previously reported in the literature. 3-(Aminophenoxy)propyl-1,2-diols revealed greater activity than both 3-(nitrophenoxy)propyl-1,2-diols and 3-(nitrophenoxymethyl)-[1,3,2]dioxaborolan-2-ols. A QSAR study revealed a linear correlation between lipophilicity and inhibition activity.

Download full-text PDF

Source

Publication Analysis

Top Keywords

inhibition activity
8
activity
5
synthesis aminopeptidase
4
aminopeptidase inhibiting
4
inhibiting activity
4
activity 3-nitrophenoxymethyl-[132]dioxaborolan-2-ols
4
3-nitrophenoxymethyl-[132]dioxaborolan-2-ols open
4
open analogues
4
analogues aminopeptidase
4
apn
4

Similar Publications

Anaerobic probiotics-in situ Se nanoradiosensitizers selectively anchor to tumor with immuno-regulations for robust cancer radio-immunotherapy.

Biomaterials

January 2025

Department of Pharmacy of Puning People's Hospital (Guangdong Postdoctoral Innovation Practice Base of Jinan University), Department of Chemistry, State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangdong, 510632, China. Electronic address:

Developing translational nanoradiosensitizers with multiple activities in sensitizing tumor cells and re-shaping tumor immunosuppressive microenvironments are urgently desired for addressing the poor therapeutic efficacy of radiotherapy in clinic. Inspired by the anaerobic and immunoagonist properties of the probiotic (bifidobacterium longum, BL), herein, a biomimetic Selenium nanoradiosensitizer in situ-formed on the surface of the probiotic (BL@SeNPs) is developed in a facile method to potentiate radiotherapy. BL@SeNPs selectively target to hypoxia regions of tumors and then anchor on the surface of tumor cells to inhibit its proliferation.

View Article and Find Full Text PDF

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Tumor necrosis factor receptor-associated factor 1 (TRAF1) is a crucial signaling adaptor involved in multiple cellular events. However, its role in regulating osteoclastogenesis and energy metabolism remains unclear. Here, we report that TRAF1 promotes osteoclastogenesis and oxidative phosphorylation (OXPHOS).

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!