Blood-based biomarker discovery for psychotic disorders has yet to impact upon routine clinical practice. In physical disorders antibodies have established roles as diagnostic, prognostic and predictive (theranostic) biomarkers, particularly in disorders thought to have a substantial autoimmune or infective aetiology. Two approaches to antibody biomarker identification are distinguished: a "top-down" approach, in which antibodies to specific antigens are sought based on the known function of the antigen and its putative role in the disorder, and emerging "bottom-up" or "omics" approaches that are agnostic as to the significance of any one antigen, using high-throughput arrays to identify distinctive components of the antibody repertoire. Here we review the evidence for antibodies (to self-antigens as well as infectious organism and dietary antigens) as biomarkers of diagnosis, prognosis, and treatment response in psychotic disorders. Neuronal autoantibodies have current, and increasing, clinical utility in the diagnosis of organic or atypical psychosis syndromes. Antibodies to selected infectious agents show some promise in predicting cognitive impairment and possibly other symptom domains (eg, suicidality) within psychotic disorders. Finally, infectious antibodies and neuronal and other autoantibodies have recently emerged as potential biomarkers of response to anti-infective therapies, immunotherapies, or other novel therapeutic strategies in psychotic disorders, and have a clear role in stratifying patients for future clinical trials. As in nonpsychiatric disorders, combining biomarkers and large-scale use of "bottom-up" approaches to biomarker identification are likely to maximize the eventual clinical utility of antibody biomarkers in psychotic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6293207 | PMC |
http://dx.doi.org/10.1093/schbul/sby021 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!