TiO2 NPs Alleviates High-Temperature Induced Oxidative Stress in Silkworms.

J Econ Entomol

School of Basic Medicine and Biological Sciences, Soochow University, Suzhou, Jiangsu, P.R. China.

Published: April 2018

Silkworm, Bombyx mori (L.; Lepidoptera: Bombycidae), is an economically important insect, which is sensitive to the environment and susceptible to oxidative damages at high temperature. Low concentrations of TiO2 NPs (titanium dioxide nanoparticles) can scavenge reactive oxygen species (ROS) produced by oxidative damages in vivo. To explore whether TiO2 NPs could alleviate oxidative damages of high temperature, the effects of TiO2 NPs treatment on silkworm growth, the levels of ROS and H2O2, as well as the transcription level of antioxidant-related genes were studied at 30°C. These results showed that TiO2 NPs treatment increased silkworm body weight by 6.0% and reduced the occurrence of irregular cocoon at 30°C. TiO2 NPs treatment at 30°C decreased ROS levels in fat body and increased expression of Hsp70, SOD by 5.70-fold at 48 h, TPx by 1.61-fold, CAT by 1.81-fold. These results indicated that TiO2 NPs treatment at 30°C could promote the expression of antioxidant genes and reduce oxidative stress and provide a new method to alleviate high-temperature induced oxidative stress to silkworm.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jee/toy002DOI Listing

Publication Analysis

Top Keywords

tio2 nps
28
nps treatment
16
oxidative stress
12
oxidative damages
12
high-temperature induced
8
induced oxidative
8
damages high
8
high temperature
8
30°c tio2
8
treatment 30°c
8

Similar Publications

This research investigates the microbial inactivation potential of ternary TiO-CuO-chitosan nanocomposites (TCC NCs) applied as surface coatings on cowhide leather. Initially, bare TiO nanoparticles (NPs) and binary TiO-CuO (TC) NCs, with varying CuO NPs content, were prepared using an sol-gel method. These binary TC NCs were then modified with chitosan at varying weight percentages (2%, 4%, 6%, and 8%).

View Article and Find Full Text PDF

Environmental exposure to single and combined ZnO and TiO nanoparticles: Implications for rainbow trout gill immune functions and microbiota.

Chemosphere

January 2025

Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life Earth and Environment, University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.

ZnO and TiO nanoparticles (NPs) are widely employed for their antibacterial properties, but their potential environmental impact is raising concerns. This study aimed to assess their single and combined effects at environmentally relevant concentrations (210 μg L) on rainbow trout (Oncorhynchus mykiss) gills microbiota and immune functions. 16S rRNA gene sequencing performed after 5 and 28 days of exposure suggests that TiO NPs had a more immediate impact on bacterial diversity, while prolonged exposure to the mixture altered community composition.

View Article and Find Full Text PDF

Bee population decline is associated with various stressors, including exposure to pollutants. Among these, titanium dioxide (TiO), an emerging nanoparticle (NP) pollutant, potentially affects living organisms, including bees. This study evaluates the impact of TiO NPs ingestion (1.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

This study investigated the effects of various titanium nanoparticles (TiONPs) on the structure, function, and trophic levels of the wheat rhizobiome. In contrast to the typically toxic effects of small nanoparticles (~10 nm), this research focused on molecular TiO and larger nanoparticles, as follows: medium-sized (68 nm, NPs1) and large (>100 nm, NPs2). The results demonstrated significant yet diverse impacts of different TiO forms on the rhizosphere microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!