Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5825098PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193335PLOS

Publication Analysis

Top Keywords

diatom phaeodactylum
8
phaeodactylum tricornutum
8
nitrogen assimilation
8
molecular adaptations
4
adaptations phosphorus
4
deprivation
4
phosphorus deprivation
4
deprivation comparison
4
comparison nitrogen
4
nitrogen deprivation
4

Similar Publications

A major obstacle to exploiting industrial flue gas for microalgae cultivation is the unfavorable acidic environment. We previously identified three upregulated genes in the low-pH-adapted model diatom : ferredoxin (PtFDX), cation/proton antiporter (PtCPA), and HCO transporter (PtSCL4-2). Here, we individually overexpressed these genes in to investigate their respective roles in resisting acidic stress (pH 5.

View Article and Find Full Text PDF

This study presents characterisation of diatom's PtLPCAT1 (acyl-CoA: lysophosphatidylcholine acyltransferase) activity in phospholipid remodelling. In this research microsomal fractions of yeast Δale1 mutant overexpressing PtLPCAT1 were used as a source of the tested enzyme. In the assays evaluating remodelling of different phospholipids by PtLPCAT1 not modified microsomal fractions of the tested yeast were used.

View Article and Find Full Text PDF

Cellular and genetic responses of Phaeodactylum tricornutum to seawater acidification and copper exposure.

Mar Environ Res

December 2024

Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China. Electronic address:

The ongoing decline in seawater pH, driven by the absorption of excess atmospheric CO, represents a major environmental issue. This reduction in pH can interact with metal pollution, resulting in complex effects on marine phytoplankton. In this study, we examined the combined impacts of seawater acidification and copper (Cu) exposure on the marine diatom Phaeodactylum tricornutum.

View Article and Find Full Text PDF

Background: The clinical efficacies of Ulcerative colitis (UC) are far from satisfactory. Fucoxanthin (FUC) is a marine carotenoid that is abundant in seaweed and microalgae. It has been reported that FUC can possess anti-inflammatory and antioxidant.

View Article and Find Full Text PDF

Dye-contaminated wastewater poses serious environmental risks to ecosystems and human health. Diatoms, algae with nanoporous frustules (cell walls), offer promising potential for wastewater remediation due to their high surface area and adsorption properties. While dead diatom biomass is well-studied for biosorption, research on living diatoms' bioaccumulation and biotransformation potential is limited, with gaps in kinetic and equilibrium modeling of dye adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!