AI Article Synopsis

  • The study investigates the neuroprotective effects of kimchi methanol extract (KME) on mice subjected to a high-cholesterol diet, focusing on its potential in reducing oxidative stress and protecting against neurodegenerative diseases.
  • KME treatment significantly lowered levels of harmful reactive oxygen species and inflammatory markers while increasing glutathione levels, indicating enhanced antioxidative defenses.
  • Additionally, KME helped suppress endoplasmic reticulum (ER) stress and apoptotic signaling, suggesting it may offer protective benefits for neuronal cells.

Article Abstract

Endoplasmic reticulum (ER) stress-related unfolded peptide accumulation is closely associated with the development of neurodegenerative diseases known as protein misfolding disorders. The antioxidative properties of kimchi, a traditional Korean fermented vegetable dish, have been well established. In this study, the neuroprotective effects of the kimchi methanol extract (KME) were examined in high-cholesterol diet (HCD)-fed mice. The animals were fed a HCD, with oral administration of either KME (KME group, 200 mg·kg bw·day, n = 10) or distilled water (Control group, n = 10) for 8 weeks. Compared with the levels in the control group, the reactive oxygen species, peroxynitrite, and lipid peroxidation levels in the brain were significantly decreased in the KME group (P < .05), whereas the glutathione level was increased (P < .05). In addition, the ER stress biomarkers, phospho-eukaryotic initiation factor 2 subunit α, glucose-regulated protein 78, X-box binding protein 1, inositol-requiring enzyme 1, and C/EBP homologous protein and the nuclear factor-kappaB-mediated inflammation were significantly reduced in the KME group (P < .05). In contrast, the expression levels of antioxidative enzymes regulated by nuclear factor erythroid 2-related factor-2 were elevated (P < .05). The amyloid-beta expression levels of the KME group were lower than that of the control group (P < .05). Moreover, the expression levels of Bcl-2-associated X, and caspases-3 and -9 were downregulated, with a concomitant upregulation of B cell lymphoma 2 (P < .05). Accordingly, KME provide neuronal cell protection via suppressing ER stress and caspase cascade signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1089/jmf.2017.4103DOI Listing

Publication Analysis

Top Keywords

neuroprotective effects
8
methanol extract
8
korean fermented
8
fermented vegetable
8
endoplasmic reticulum
8
kme group
8
control group
8
effects methanol
4
extract kimchi
4
kimchi korean
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!