Downregulating transcription of the oncogene c-MYC is a feasible strategy for cancer therapy. Stabilization of the G-quadruplex structure present in the c-MYC promoter can suppress c-MYC transcription. Thus, far, several ligands targeting this structure have been developed. However, most have shown no selectivity for the c-MYC G-quadruplex over other G-quadruplexes, leading to uncertain side effects. In this study, through structural modification of aryl-substituted imidazole/carbazole conjugates, a brand-new, four-leaf clover-like ligand called IZCZ-3 was found to preferentially bind and stabilize the c-MYC G-quadruplex. Further intracellular studies indicated that IZCZ-3 provoked cell cycle arrest and apoptosis and thus inhibited cell growth, primarily by blocking c-MYC transcription through specific targeting of the promoter G-quadruplex structure. Notably, IZCZ-3 effectively suppressed tumor growth in a mouse xenograft model. Accordingly, this work provides an encouraging example of a selective small molecule that can target one particular G-quadruplex structure, and the selective ligand might serve as an excellent anticancer agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jmedchem.7b01697 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department of Pathophysiology, School of Basic Medical Sciences, The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, State Key Laboratory of Esophageal, Cancer Prevention and Treatment, Provincial Cooperative Innovation Center for Cancer Chemoprevention, China-US (Henan) Hormel Cancer Institute, Tianjian Laboratory of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, 450000, China.
Esophageal squamous cell carcinoma (ESCC) accounts for about 90% of esophageal cancer cases. The lack of effective therapeutic targets makes it difficult to improve the overall survival of patients with ESCC. Reticulon 4 Interacting Protein 1 (RTN4IP1) is a novel mitochondrial oxidoreductase.
View Article and Find Full Text PDFNat Immunol
January 2025
Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
The inflammasome plays multifaceted roles in cancer, but less is known about its function during premalignancy upon initial cell transformation. We report a homeostatic function of the inflammasome in suppressing malignant transformation through Ras inhibition. We identified increased hematopoietic stem cell (HSC) proliferation within the bone marrow of inflammasome-deficient mice.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Medicine and Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
The role of the immune system in regulating tissue stem cells remains poorly understood, as does the relationship between immune-mediated tissue damage and regeneration. Graft vs. host disease (GVHD) occurring after allogeneic bone marrow transplantation (allo-BMT) involves immune-mediated damage to the intestinal epithelium and its stem cell compartment.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
Exp Cell Res
December 2024
Department of Pathology, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China. Electronic address:
Hepatocellular carcinoma (HCC) is a common cancer characterized by robustly proliferative and metastatic capabilities. Bromodomain-containing proteins are critical to the development of diverse diseases via regulating cell proliferation, differentiation, and death. However, the role of Bromodomain-containing protein 3 (BRD3) in HCC is elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!