β-carotene is a lipophilic micronutrient that is considered beneficial to human health. However, there are some limitations in utilizing β-carotene in functional foods or dietary supplements currently because of its poor water dispersibility and chemical stability. A new type of β-carotene bilayer emulsion delivery system was prepared by a layer-by-layer electrostatic deposition technique, for which were chosen bovine serum albumin (BSA) as the inner emulsifier and Arabic gum (GA) as the outer emulsifier. The physicochemical properties of bilayer emulsions were mainly characterized by droplet size distribution, zeta potential, rheological behavior, Creaming Index (CI), and encapsulation ratio of β-carotene. Besides this, the effects of processing conditions (pH, thermal treatment, UV radiation, strong oxidant) and storage time on the chemical stability of bilayer emulsions were also evaluated. The bilayer emulsion had a small droplet size (221.27 ± 5.17 nm) and distribution (PDI = 0.23 ± 0.02), strong zeta potential (-30.37 ± 0.71 mV), good rheological behavior (with the highest viscosity that could reduce the possibility of flocculation) and physical stability (CI = 0), high β-carotene encapsulation ratio (94.35 ± 0.71%), and low interfacial tension (40.81 ± 0.86 mN/m). It also obtained better chemical stability under different environmental stresses when compared with monolayer emulsions studied, because it had a dense and thick bilayer structure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017972 | PMC |
http://dx.doi.org/10.3390/molecules23020495 | DOI Listing |
Environ Sci Technol
January 2025
College of Environment, Zhejiang University of Technology, Hangzhou 310032, P. R. of China.
Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.
View Article and Find Full Text PDFLangmuir
January 2025
National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China.
To balance the stability and dissolution of polyacrylamide (PAM), emulsion drag reducers dominate the successful operation of volumetric fracturing. Herein, a pH-switchable four-tailed ionic liquid surfactant (OA/Cyclen) is synthesized by oleic acid (OA) and 1,4,7,10-tetraazacyclododecane (Cyclen). The four-tailed structure of OA/Cyclen enhances the stability of the emulsion polymerization reactor and supplies enough switchable sites for triggering the intensified release of the PAM emulsion.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
Despite tremendous progress of dienamine catalysis along with its application in enantioselective synthesis over nearly two decades, certain limitations, especially with respect to the regioselectivity in the dienamine generation step, continue to persist. To overcome these shortcomings of classical dienamine catalysis, we now introduce the concept of alkoxy-directed dienamine catalysis and apply it to the enantioselective arene construction by desymmetrizing -enediones through [4 + 2]-cycloaddition. Catalyzed by a diphenylprolinol silyl ether, this reaction utilizes γ-alkoxy α,β-unsaturated aldehydes as the substrate and proceeds in a highly regioselective fashion through the intermediacy of δ-alkoxy dienamine.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China.
Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li transport pathways at the clay-PEO interfaces due to their varied structural configurations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!