Chagas disease is one of the most relevant endemic diseases in Latin America caused by the flagellate protozoan Trypanosoma cruzi. Nifurtimox and benzonidazole are the drugs used in the treatment of this disease, but they commonly are toxic and present severe side effects. New effective molecules, without collateral effects, has promoted the investigation to develop new lead compounds with to advance for clinical trials. Previously, 3-nitro-1H-1,2,4-triazole-based amines and 1,2,3-triazoles demonstrated significant trypanocidal activity against T. cruzi. In this paper, we synthesized a new series of 92 examples of 1,2,3-triazoles. Six compounds exhibited antiparasitic activity, 14, 25, 27, 31 and 40, 43 and were effective against epimastigotes of two strains of T. cruzi (Y and Dm28-C) and 25, 27 and 31 exhibited trypanocidal activity similar to benzonidazole. Notably, the compound 25 compared to benzonidazole increase the toxicity against T. cruzi, with no apparent toxicity to the cell line of mice macrophages or primary mice peritoneal macrophages. As results, we calculated selectivity indexes up to 2000 to 25 and 31 in both T. cruzi strains. Derivative 14 caused a trypanostatic effect because it did not damage external epimastigote membrane. Triazoles 40 and 43 impaired parasites viability using a pathway not dependent on ROS production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10863-018-9746-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!