Carbon monoxide releasing molecules (CORMs) have been suggested as a new synthetic class of antimicrobials to treat bacterial infections. Here we utilized a novel EBOR-CORM-1 ([NEt][MnBr(CO)]) capable of water-triggered CO-release, and tested its efficacy against a collection of clinical strains that differ in infection-related virulence traits. We found that while EBOR-CORM-1 was effective in clearing planktonic and biofilm cells of strain PAO1 in a concentration dependent manner, this effect was less clear and varied considerably between different cystic fibrosis (CF) lung isolates. While a reduction in cell growth was observed after 8 h of CORM application, either no effect or even a slight increase in cell densities and the amount of biofilm was observed after 24 h. This variation could be partly explained by differences in bacterial virulence traits: while CF isolates showed attenuated virulence and growth compared to strain PAO1, they formed much more biofilm, which could have potentially protected them from the CORM. Even though no clear therapeutic benefits against a subset of isolates was observed in an wax moth acute infection model, EBOR-CORM-1 was more efficient at reducing the growth of CF isolate co-culture populations harboring intraspecific variation, in comparison with efficacy against more uniform single isolate culture populations. Together these results suggest that CORMs could be effective at controlling genetically diverse populations typical for natural chronic CF infections and that the potential benefits of some antibiotics might not be observed if tested only against clonal bacterial populations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5809400PMC
http://dx.doi.org/10.3389/fmicb.2018.00195DOI Listing

Publication Analysis

Top Keywords

carbon monoxide
8
monoxide releasing
8
intraspecific variation
8
virulence traits
8
strain pao1
8
populations
5
antimicrobial activity
4
activity carbon
4
releasing molecule
4
ebor-corm-1
4

Similar Publications

This work describes the design and implementation of optics for EXCLAIM, the EXperiment for Cryogenic Large-Aperture Intensity Mapping. EXCLAIM is a balloon-borne telescope that will measure integrated line emission from carbon monoxide at redshifts z < 1 and ionized carbon ([CII]) at redshifts z = 2.5 - 3.

View Article and Find Full Text PDF

Repeated measurements of household air pollution may provide better estimates of average exposure but can add to costs and participant burden. In a randomized trial of gas versus biomass cookstoves in four countries, we took supplemental personal 24-h measurements on a 10% subsample for mothers and infants, interspersed between protocol samples. Mothers had up to five postrandomization protocol measurements over 16 months, while infants had three measurements over one year.

View Article and Find Full Text PDF

Introduction: Delayed neurological sequelae is a common complication following carbon monoxide poisoning, which significantly affects the quality of life of patients with the condition. We aimed to develop a machine learning-based prediction model to predict the frequency of delayed neurological sequelae in patients with carbon monoxide poisoning.

Methods: A single-center retrospective analysis was conducted in an emergency department from January 01, 2018, to December 31, 2023.

View Article and Find Full Text PDF

Exposure Contrasts of Women Aged 40-79 Years during the Household Air Pollution Intervention Network Randomized Controlled Trial.

Environ Sci Technol

January 2025

Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94609, United States.

Exposure to household air pollution has been linked to adverse health outcomes among women aged 40-79. Little is known about how shifting from biomass cooking to a cleaner fuel like liquefied petroleum gas (LPG) could impact exposures for this population. We report 24-h exposures to particulate matter (PM), black carbon (BC), and carbon monoxide (CO) among women aged 40 to <80 years participating in the Household Air Pollution Intervention Network trial.

View Article and Find Full Text PDF

We report herein the synthesis and full spectroscopic characterization of two AB-corrole phosphonic acids. Thanks to the presence of a phosphonic acid functional group at the 10--position, the corroles were covalently linked to the hexanuclear Zr clusters of a PCN-222 metal-organic framework (MOF). After the insertion of cobalt into the corrole macrocycle, the metal complexes are able to bind small volatile molecules such as carbon monoxide (CO).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!