A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detoxification of pulping black liquor with Pleurotus ostreatus or recombinant Pichia pastoris followed by CuO/TiO/visible photocatalysis. | LitMetric

Detoxification of pulping black liquor with Pleurotus ostreatus or recombinant Pichia pastoris followed by CuO/TiO/visible photocatalysis.

Sci Rep

Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI) Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, DC, Colombia.

Published: February 2018

Cellulose-pulping requires chemicals such as Cl, ClO, HO, and O. The black liquor (BL) generated exhibits a high chemical oxygen demand (COD), five-day biochemical oxygen demand (BOD), and chlorophenol content, along with an augmented colour and increased pH. BL is often discharged into water bodies, where it has a negative impact on the environment. Towards that end, laccases are of great interest for bioremediation, since they can degrade aromatic and non-aromatic compounds while reducing O to water instead of HO. As such, we evaluated Pleurotus ostreatus and Pichia pastoris (which produces rPOXA 1B laccase) in the treatment of synthetic BL (SBL) in an "in vitro" modified Kraft process followed by CuO/TiO/visible light photocatalysis. Treating SBL with P. ostreatus viable biomass (VB) followed by CuO/TiO/visible light photocatalysis resulted in 80.3% COD removal and 70.6% decolourisation. Toxic compounds such as 2-methylphenol, 4-methylphenol, and 2-methoxyphenol were eliminated. Post-treated SBL exhibited low phytotoxicity, as evidenced by a Lactuca sativa L seed germination index (GI) > 50%. Likewise, SBL treatment with P. pastoris followed by VB/CuO/TiO/visible light photocatalysis resulted in 63.7% COD removal and 46% decolourisation. Moreover, this treatment resulted in the elimination of most unwanted compounds, with the exception of 4-chlorophenol. The Lactuca sativa L seed GI of the post-treated SBL was 40%, indicating moderate phytotoxicity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823849PMC
http://dx.doi.org/10.1038/s41598-018-21597-2DOI Listing

Publication Analysis

Top Keywords

light photocatalysis
12
black liquor
8
pleurotus ostreatus
8
pichia pastoris
8
oxygen demand
8
cuo/tio/visible light
8
cod removal
8
post-treated sbl
8
lactuca sativa
8
sativa seed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!