Microbial activity in soil is spatially heterogeneous often forming spatial hotspots that contribute disproportionally to biogeochemical processes. Evidence suggests that bacterial spatial organization contributes to the persistence of anoxic hotspots even in unsaturated soils. Such processes are difficult to observe in situ at the microscale, hence mechanisms and time scales relevant for bacterial spatial organization remain largely qualitative. Here we develop an experimental platform based on glass-etched micrometric pore networks that mimics resource gradients postulated in soil aggregates to observe spatial organization of fluorescently tagged aerobic and facultative anaerobic bacteria. Two initially intermixed bacterial species, Pseudomonas putida and Pseudomonas veronii, segregate into preferential regions promoted by opposing gradients of carbon and oxygen (such persistent coexistence is not possible in well-mixed cultures). The study provides quantitative visualization and modeling of bacterial spatial organization within aggregate-like hotspots, a key step towards developing a mechanistic representation of bacterial community organization in soil pores.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5823907 | PMC |
http://dx.doi.org/10.1038/s41467-018-03187-y | DOI Listing |
Curr Opin Genet Dev
January 2025
Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA; Broad Institute, Cambridge, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA. Electronic address:
In modern cancer biology, Hanahan and Weinberg's classic depiction of the Hallmarks of Cancer serves as a heuristic for understanding malignant phenotypes [1]. Genetic determinants of these phenotypes promote cancer induction and progression, and these mutations drive current approaches to understanding and treating cancer. Meanwhile, for over a century, pathologists have noted that profound alterations of nuclear structure accompany transformation, integrating these changes into diagnostic classifications (Figure 1).
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
January 2025
Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Research Unit of Hematologic Malignancies Genomics and Translational Research of Chinese Academy of Medical Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) techniques hold great value in evaluating the heterogeneity and spatial characteristics of hematopoietic cells within tissues. These two techniques are highly complementary, with scRNA-seq offering single-cell resolution and ST retaining spatial information. However, there is an urgent demand for well-organized and user-friendly toolkits capable of handling single-cell and spatial information.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Agricultural Machinery Engineering, Graduate School, Chungnam National University, Daejeon 34134, Republic of Korea.
Efficient management of soil nutrients is essential for optimizing crop production, ensuring sustainable agricultural practices, and addressing the challenges posed by population growth and environmental degradation. Smart agriculture, using advanced technologies, plays an important role in achieving these goals by enabling real-time monitoring and precision management of nutrients. In open-field soil cultivation, spatial variability in soil properties demands site-specific nutrient management and integration with variable-rate technology (VRT) to optimize fertilizer application, reduce nutrient losses, and enhance crop yields.
View Article and Find Full Text PDFInsects
January 2025
Department of Entomology and Nematology, University of California, Davis, 1 Shields Ave, Davis, CA 95616, USA.
Many social and environmental variables can affect the interactions among individuals in an insect colony that fundamentally structure its social organization. Along with important attributes such as age and caste, immunity-related factors such as the performance of sanitary tasks or exposure to a pathogen can also influence an individual's social interactions and their place in the resulting social network. Most work on this subject has supported the hypothesis that health-compromised individuals will exhibit altered social or spatial behavior that presumably limits the spread of infection.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, 2130 W Holcombe Blvd., Houston, TX 77030, USA.
Predicting the behavior of clear cell renal cell carcinoma (ccRCC) is challenging using standard-of-care histopathologic examination. Indeed, pathologic RCC tumor grading, based on nuclear morphology, performs poorly in predicting outcomes of patients with International Society of Urological Pathology/World Health Organization grade 2 and 3 tumors, which account for most ccRCCs. We applied spatial point process modeling of H&E-stained images of patients with grade 2 and grade 3 ccRCCs ( = 72) to find optimum separation into two groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!