The complexity of interacting quantum many-body systems leads to exceedingly long recurrence times of the initial quantum state for all but the smallest systems. For large systems, one cannot probe the full quantum state in all its details. Thus, experimentally, recurrences can only be determined on the level of the accessible observables. Realizing a commensurate spectrum of collective excitations in one-dimensional superfluids, we demonstrate recurrences of coherence and long-range order in an interacting quantum many-body system containing thousands of particles. Our findings will enable the study of the coherent dynamics of large quantum systems even after they have reached a transient thermal-like state.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aan7938DOI Listing

Publication Analysis

Top Keywords

quantum many-body
12
many-body system
8
interacting quantum
8
quantum state
8
quantum
6
recurrences isolated
4
isolated quantum
4
system complexity
4
complexity interacting
4
systems
4

Similar Publications

Noise-agnostic quantum error mitigation with data augmented neural models.

npj Quantum Inf

January 2025

QICI Quantum Information and Computation Initiative, Department of Computer Science, The University of Hong Kong, Pok Fu Lam, Hong Kong.

Quantum error mitigation, a data processing technique for recovering the statistics of target processes from their noisy version, is a crucial task for near-term quantum technologies. Most existing methods require prior knowledge of the noise model or the noise parameters. Deep neural networks have the potential to lift this requirement, but current models require training data produced by ideal processes in the absence of noise.

View Article and Find Full Text PDF

The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies.

View Article and Find Full Text PDF

Resonantly Enhanced Hybrid Wannier-Mott-Frenkel Excitons in Organic-Inorganic Van Der Waals Heterostructures.

Adv Mater

January 2025

Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China.

Hybrid excitons formed via resonant hybridization in 2D material heterostructures feature both large optical and electrical dipoles, providing a promising platform for many-body exciton physics and correlated electronic states. However, hybrid excitons at organic-inorganic interface combining the advantages of both Wannier-Mott and Frenkel excitons remain elusive. Here, hybrid excitons are reported in the copper phthalocyanine/molybdenum diselenide (CuPc/MoSe) heterostructure (HS) featuring strong molecular orientation dependence by low-temperature photoluminescence and absorption spectroscopy.

View Article and Find Full Text PDF

Guaranteed efficient energy estimation of quantum many-body Hamiltonians using ShadowGrouping.

Nat Commun

January 2025

Institute for Quantum Inspired and Quantum Optimization, Hamburg University of Technology, Hamburg, Germany.

Estimation of the energy of quantum many-body systems is a paradigmatic task in various research fields. In particular, efficient energy estimation may be crucial in achieving a quantum advantage for a practically relevant problem. For instance, the measurement effort poses a critical bottleneck for variational quantum algorithms.

View Article and Find Full Text PDF

Green's function theory has emerged as a powerful many-body approach not only in condensed matter physics but also in quantum chemistry in recent years. We have developed a new all-electron implementation of the BSE@GW formalism using numeric atom-centered orbital basis sets (Liu, C. 2020, 152, 044105).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!