Background-Titin represents an important biomechanical sensor which determines compliance and diastolic/systolic function of the left ventricle (LV). To assess the different titin-isoform expression and the relationships with functional and geometric patterns, we analyzed titin-isoform expression and cardiomyocytes contractile function in myocardial biopsy samples of patients undergoing aortic valve replacement (AVR) for aortic stenosis (AS) and for aortic regurgitation (AR). Method -Specimens, collected from the LV of 35 with AS and 35 with AR undergoing AVR were analyzed for titin-isoform expression and cardiomyocytes force measurement. Ten donor hearts were analyzed as controls for normal values. Results were implemented with preoperative geometry and function assessed by Doppler echocardiography. Results-Compared to controls, N2BA/N2B titin-isoforms ratio was reduced to 0.24 in AS (p < 0.001) but increased to 0.51 in AR (p < 0.001). N2BA/N2B titin-isoforms ratio was further reduced in 8 patients with severe (restrictive) diastolic dysfunction (0.17 ± 0.03, p < 0.001) but was increased in patients with severe systolic dysfunction (0.58 ± 0.07, p < 0.001). As compared to controls, Fpasive was higher in AS (6.7 ± 0.2 vs 4.4 ± 0.4 kN/m, p < 0.001) but was lower in AR (3.7 ± 0.2 vs 4.4 ± 0.4 kN/m, p < 0.001). Total force was comparable. Fpassive was significantly higher in AS patients with severe than with moderate LV diastolic dysfunction (7.1 ± 0.5 vs 6.6. ± 0.6, p = 0.004). Conclusions-titin-isoform expression differs in AS and AR as adaptive response to different pathophysiologic scenarios. Co-expressing isoforms at varying ratios results in modulation of the passive mechanical behavior of the LV at different degree of dysfunction and allows for compensative adjustment of the diastolic/systolic properties of the myocardium.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijcard.2018.01.136DOI Listing

Publication Analysis

Top Keywords

titin-isoform expression
12
aortic stenosis
8
stenosis aortic
8
aortic regurgitation
8
relationships functional
8
functional geometric
8
analyzed titin-isoform
8
expression cardiomyocytes
8
aortic
5
regurgitation express
4

Similar Publications

Aging is associated with cardiac contractile abnormalities, but the etiology of these contractile deficits is unclear. We hypothesized that cardiac contractile and regulatory protein expression is altered during aging. To investigate this possibility, left ventricular (LV) lysates were prepared from young (6 months) and old (24 months) Fischer344 rats.

View Article and Find Full Text PDF

Objective: This study aimed to find global mechanisms related to carnosine synthesis in slow-growing Korat chickens (KRC) using a proteomic approach.

Methods: M. pectoralis major samples were collected from 10-week-old female KRC including low-carnosine (LC, 2,756.

View Article and Find Full Text PDF
Article Synopsis
  • Moderate exercise in high cardiovascular risk models leads to better weight management and improved glucose tolerance compared to sedentary lifestyle.
  • Strenuous exercise did not enhance vascular function and caused some negative changes in heart structure, such as eccentric hypertrophy and reduced ejection fraction.
  • Overall, moderate exercise appeared to provide more significant cardiovascular benefits than strenuous training in this study.
View Article and Find Full Text PDF

In most of the aquaculture selection programs, harvest body weight has been a preferred performance trait for improvement. Molecular interplay of genes linked to higher body weight is not elucidated in major carp species. The genetically improved rohu carp with 18% average genetic gain per generation with respect to harvest body weight is a promising candidate for studying genes' underlying performance traits.

View Article and Find Full Text PDF

Inherited mutations in contractile and structural genes, which decrease cardiomyocyte tension generation, are principal drivers of dilated cardiomyopathy (DCM)- the leading cause of heart failure . Progress towards developing precision therapeutics for and defining the underlying determinants of DCM has been cardiomyocyte centric with negligible attention directed towards fibroblasts despite their role in regulating the best predictor of DCM severity, cardiac fibrosis . Given that failure to reverse fibrosis is a major limitation of both standard of care and first in class precision therapeutics for DCM, this study examined whether cardiac fibroblast-mediated regulation of the heart's material properties is essential for the DCM phenotype.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!