Quantum thermodynamic parameters can be determined using path integral Monte Carlo (PIMC) simulations. These simulations, however, become computationally demanding as the quantum nature of the system increases, although their efficiency can be improved by using higher order approximations to the thermal density matrix, specifically the action. Here we compare the standard, primitive approximation to the action (PA) and three higher order approximations, the Takahashi-Imada action (TIA), the Suzuki-Chin action (SCA) and the Chin action (CA). The resulting PIMC methods are applied to two realistic potential energy surfaces, for HO and HCN-HNC, both of which are spectroscopically accurate and contain three-body interactions. We further numerically optimise, for each potential, the SCA parameter and the two free parameters in the CA, obtaining more significant improvements in efficiency than seen previously in the literature. For both HO and HCN-HNC, accounting for all required potential and force evaluations, the optimised CA formalism is approximately twice as efficient as the TIA formalism and approximately an order of magnitude more efficient than the PA. The optimised SCA formalism shows similar efficiency gains to the CA for HCN-HNC but has similar efficiency to the TIA for HO at low temperature. In HO and HCN-HNC systems, the optimal value of the a CA parameter is approximately 13, corresponding to an equal weighting of all force terms in the thermal density matrix, and similar to previous studies, the optimal α parameter in the SCA was ∼0.31. Importantly, poor choice of parameter significantly degrades the performance of the SCA and CA methods. In particular, for the CA, setting a = 0 is not efficient: the reduction in convergence efficiency is not offset by the lower number of force evaluations. We also find that the harmonic approximation to the CA parameters, whilst providing a fourth order approximation to the action, is not optimal for these realistic potentials: numerical optimisation leads to better approximate cancellation of the fifth order terms, with deviation between the harmonic and numerically optimised parameters more marked in the more quantum HO system. This suggests that numerically optimising the CA or SCA parameters, which can be done at high temperature, will be important in fully realising the efficiency gains of these formalisms for realistic potentials.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.5000392DOI Listing

Publication Analysis

Top Keywords

higher order
12
order approximations
8
thermal density
8
density matrix
8
approximation action
8
force evaluations
8
efficiency gains
8
optimal parameter
8
realistic potentials
8
order
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!