Magnetic bioadsorbents based on chitosan with different molecular weights were prepared. To stabilize under acidic condition the synthesized magnetic chitosan was crosslinked with κ-carrageenan. The characterization of magnetic bioadsorbents revealed that the size of magnetic nanoparticles is affected by the chitosan molecular weight. Magnetic nanoparticles with larger sizes were obtained with the high molecular weight of chitosan. The removal of eriochrome black-T (EBT) by the magnetic bioadsorbents was investigated. The equilibrium adsorption isotherm data of EBT on bioadsorbents were found to be well explained through Langmuir isotherm model, from which the maximum adsorption capacities were found to be 280, 235, and 199mg/g for bioadsorbents prepared with low, medium, and high molecular weights of chitosan, respectively. A remarkable reduction in adsorption capacities of bioadsorbents was observed as the pH of dye solution was increased. The reduction in the dye adsorption under basic media suggested using a mild condition (pH=9) to recycle and reuse the bioadsorbents. Cyclic experiments indicated that current bioadsorbents can be effectively reused to remove anionic EBT from aqueous solutions. The removal efficiencies remained >93% even after five adsorption-desorption cycles, which suggest the present bioadsorbents as a great candidate in the wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2018.02.102 | DOI Listing |
Int J Biol Macromol
June 2024
Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India. Electronic address:
Herein, a polymer-based bioadsorbent was prepared by cross-linking chitosan to filter mud and magnetic pectin (Ch-mPC@FM) for the removal of Bismark Brown R dye (BB-R) from wastewater. Morphological characterization analysis indicated that Ch-mPC@FM had a higher surface area and better pore structure than its components. The Artificial Neuron Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were employed to evaluate the simulation and prediction of the adsorption process based on input variables like temperature, pH, dosage, initial BB-R dye concentration, and contact time.
View Article and Find Full Text PDFAnal Methods
March 2024
Laboratoire de Chimie Minérale Appliquée (LR19ES02), Faculté des Sciences de Tunis, Université de Tunis El Manar, Campus Universitaire El Manar I, 2092 Tunis, Tunisia.
This paper presents a study on the application of magnetic biochars derived from three distinct biomass sources: almond (AMBC), walnut (WMBC), and peanut (PMBC) shells for magnetic solid-phase extraction (MSPE) of naproxen, a non-steroidal anti-inflammatory drug, from human saliva prior to LC-MS analysis. The three magnetic biochars were synthesized and characterized through IR, XRD, SEM, and EDX analyses. This work explored the factors influencing extraction efficiency using these three bioadsorbents through experimental design.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
Department of Chemistry, Federal University of Sergipe, 49100-000 São Cristóvão, Sergipe, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, UNESP, 14800-900 Araraquara, São Paulo, Brazil.
In the present study, a new application was proposed for the eucalyptus sawdust waste, which is an environmental passive. Three adsorbent materials composed of chitosan (CS), sawdust (CSW), and magnetic beads (CSWF) were developed and used for the Direct Violet-51 remediation. The adsorption testes were optimized based on the variation of the adsorption parameters: (i) pH (2-12), (ii) contact time (5-60 min), (iii) initial dye concentration (10-60 mg L), (iv) adsorbent mass (10-100 mg) in 10 mL.
View Article and Find Full Text PDFNanoscale Adv
December 2023
School of Architecture, Computing and Engineering, University of East London EB 1.102 Docklands Campus, University Way London E16 2RD UK.
In a stride towards sustainable solutions, this research endeavors to address the critical issue of water pollution heavy metals by coupling the power of magnetic nanotechnology, in combination with a green chemistry approach, to eliminate two noxious inorganic pollutants: chromium(vi) and nickel(ii) from aqueous environments. The synthesis of magnetite (FeO) nanoparticles was achieved using ferric chloride hexahydrate (FeCl·6HO) as a precursor, with the assistance of Lam. leaves extract, known for its remarkable salt-reducing properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2024
College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!