The present work is aimed at investigating the mechanical and in vitro biological properties of polyphenylene ether ether sulfone (PPEES)/nanohydroxyapatite (nHA) composite fibers. Electrospinning was used to prepare nanofiber composite mats of PPEES/nHA with different weight percentages of the inorganic filler, nHA. The fabricated composites were characterized using Fourier transform infrared spectroscopy (FTIR)-attenuated total reflectance spectroscopy (ATR) and scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) techniques. The mechanical properties of the composite were studied with a tensile tester. The FTIR-ATR spectrum depicted the functional group as well as the interaction between the PPEES and nHA composite materials; in addition, the elemental groups were identified with EDX analysis. The morphology of the nanofiber composite was studied by SEM. Tensile strength analysis of the PPEES/nHA composite revealed the elastic nature of the nanofiber composite reinforced with nHA and suggested significant mechanical strength of the composite. The biomineralization studies performed using simulated body fluid with increased incubation time showed enhanced mineralization, which showed that the composites possessed high bioactivity property. Cell viability of the nanofiber composite, studied with osteoblast (MG-63) cells, was observed to be higher in the composites containing higher concentrations of nHA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5120667PMC
http://dx.doi.org/10.1186/2194-0517-2-2DOI Listing

Publication Analysis

Top Keywords

nanofiber composite
20
composite studied
12
composite
10
polyphenylene ether
8
ether ether
8
nha composite
8
nanofiber
5
nha
5
evaluation polyphenylene
4
ether
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!