Tetrodotoxin, a Candidate Drug for Nav1.1-Induced Mechanical Pain?

Mar Drugs

UMR CNRS 6015, INSERM U1083, Mitovasc Institute, Angers University, 49055 Angers, France.

Published: February 2018

Tetrodotoxin (TTX), the mode of action of which has been known since the 1960s, is widely used in pharmacology as a specific inhibitor of voltage-gated sodium channels (Nav channels). This toxin has contributed to the characterization of the allosteric model of the Nav channel, and to discriminating TTX-sensitive and TTX-resistant subtypes. In addition to its role as a pharmacological tool, TTX is now considered a therapeutic molecule, and its development should lead to its use in certain pathologies involving Nav channels, particularly in the field of pain. Specifically, the blockade of Nav channels expressed in nociceptive fibres is one strategy for alleviating pain and its deleterious consequences on health. Recent work has identified, in addition to the Nav1.7, 1.8 and 1.9 channels, the Nav1.1 subtype on dorsal root ganglion (DRG) neurons as a crucial player in mechanical and non-thermal pain. The sensitivity of Nav1.1 to TTX could be exploited at the therapeutic level, especially in chronic pain conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5852500PMC
http://dx.doi.org/10.3390/md16020072DOI Listing

Publication Analysis

Top Keywords

nav channels
12
channels
5
tetrodotoxin candidate
4
candidate drug
4
drug nav11-induced
4
nav11-induced mechanical
4
mechanical pain?
4
pain? tetrodotoxin
4
tetrodotoxin ttx
4
ttx mode
4

Similar Publications

Background: Mounting evidence underline the relevance of macromolecular complexes in cancer. Integrins frequently recruit ion channels and transporters within complexes which behave as signaling hubs. A complex composed by β1 integrin, hERG1 K channel, the neonatal form of the Na channel Na 1.

View Article and Find Full Text PDF

Pain impacts billions of people worldwide, but treatment options are limited and have a spectrum of adverse effects. The search for safe and nonaddictive pain treatments has led to a focus on key mediators of nociceptor excitability. Voltage-gated sodium (Nav) channels in the peripheral nervous system-Nav1.

View Article and Find Full Text PDF

Voltage-gated sodium (Nav) channels are pivotal for cellular signaling, and mutations in Nav channels can lead to excitability disorders in cardiac, muscular, and neural tissues. A major cluster of pathological mutations localizes in the voltage-sensing domains (VSDs), resulting in either gain-of-function, loss-of-function effects, or both. However, the mechanism behind this functional diversity of mutations at equivalent positions remains elusive.

View Article and Find Full Text PDF

Elucidating the roles of voltage sensors in Na1.9 activation and inactivation through a spider toxin.

Biochim Biophys Acta Gen Subj

January 2025

The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China; Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, Hunan, China. Electronic address:

The gating process of voltage-gated sodium (Na) channels is extraordinary intrinsic and involves numerous factors, such as voltage-sensing domain (VSD), the N-terminus and C-terminus, and the auxiliary subunits. To date, the gating mechanism of Na channel has not been clearly elucidated. Na1.

View Article and Find Full Text PDF

Voltage-gated Na+ (Nav) channels are the primary determinants of the action potential in excitable cells. Nav channels rely on a wide and diverse array of intracellular protein-protein interactions (PPIs) to achieve their full function. Glycogen synthase kinase 3 β (GSK3β) has been previously identified as a modulator of Nav1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!