Microwave absorption is a critical challenge with progression in electronics, where fine structural designing of absorbent materials plays an effective role in optimizing their microwave absorption properties. Here, we have developed FeO@C (FC) and Fe-FeO@C (FFC) hybrid nanorings via a hydrothermal method coupled with a chemical catalytic vapor deposition technique. FC and FFC hybrid nanorings have fine carbon coating while their size can easily be tunable in a certain range from 80-130 to 90-140 nm. The optimized FC and FFC hybrid nanorings bear minimum reflection loss (RL) values of -39.1 dB at 15.9 GHz and -32.9 dB at 17.1 GHz, respectively, whereas FFC shows an effective absorption bandwidth (RL values < -10 dB) ranged from 5.2 to 18 GHz. Such an enhanced microwave absorption performance of hybrid nanorings is mainly due to the suitable impedance characteristics, multilevel interfaces, and polarization features in nanorings. This work provides an approach to design hybrid materials having a complex structure to enhance the microwave absorption properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.7b18324 | DOI Listing |
Materials (Basel)
December 2024
Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.
Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the high-elastic sponges.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Key Laboratory of Bamboo Research of Zhejiang Province, Zhejiang Academy of Forestry, Hangzhou 310023, China.
Bamboo was carbonized and further modified via co-doping with graphene oxide (GO) and polyaniline (PANI) to prepare microwave absorption composites (GO/PANI/CB) by in situ polymerization of 1R-(-)-Camphorsulfonic acid (L-CSA). The conductivity of GO/PANI/CB reached 2.17 ± 0.
View Article and Find Full Text PDFMolecules
January 2025
Department of Materials Science and Engineering, University of Utah, Salt Lake City, UT 84112, USA.
Conducting polymers represent a crucial class of functional materials with widespread applications in diverse fields. Among these, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have garnered significant attention due to their distinctive optical, electronic, and magnetic properties, as well as their exceptional tunability. These properties often exhibit intricate interdependencies, manifesting as synergistic, concomitant, or antagonistic relationships.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China.
The fabrication of dual-quantum dot heterostructures offers a promising strategy to enhance the environmental remediation performance of photocatalysts. Herein, a BiWO-based Z-scheme heterojunction was constructed by incorporating carbonized polymer dots (CPDs) and CdS quantum dots (QDs) via a microwave-assisted solvothermal method. The 1 wt% CPDs/CdS QDs/BiWO (CCBW-1) composite achieved optimal Cr(VI) removal, reaching 97.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
Slow-release hydrogel can effectively improve nutrient content of soil and reduce evaporation rate of the water. However, petroleum-based hydrogels will cause secondary pollution to soil. Herein, the nitrogen content of aminated lignin reached 7 % by Mannish reaction with microwave heating, and the influence of microwave heating on the aminated process of lignin was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!