Objective: To study the application of Geographic Information System (GIS) electronic fence technique in snail monitoring.
Methods: The electronic fence was set around the history and existing snail environments in the electronic map, the information about snail monitoring and controlling was linked to the electronic fence, and the snail monitoring information system was established on these bases. The monitoring information was input through the computer and smart phone.
Results: The electronic fence around the history and existing snail environments was set in the electronic map (Baidu map), and the snail monitoring information system and smart phone APP were established. The monitoring information was input and upload real-time, and the snail monitoring information was demonstrated in real time on Baidu map.
Conclusions: By using the electronic fence technology based on GIS, the unique "environment electronic archives" for each snail monitoring environment can be established in the electronic map, and real-time, dynamic monitoring and visual management can be realized.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.16250/j.32.1374.2017070 | DOI Listing |
Acc Chem Res
January 2025
Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
ConspectusFor chemical reactions with complex pathways, it is extremely difficult to adjust the catalytic performance. The previous strategies on this issue mainly focused on modifying the fine structures of the catalysts, including optimization of the geometric/electronic structure of the metal nanoparticles (NPs), regulation of the chemical composition/morphology of the supports, and/or adjustment of the metal-support interactions to modulate the reaction kinetics on the catalyst surface. Although significant advances have been achieved, the catalytic performance is still unsatisfactory.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Federal Rural University of Pernambuco, Department of Agronomy, Dom Manoel de Medeiros Street, w/n, Recife, PE, 52171-900, Brazil. Electronic address:
Overgrazing is the primary human-induced cause of soil degradation in the Caatinga biome, intensely threatening lands vulnerable to desertification. Grazing exclusion, a simple and cost-effective practice, could restore soils' ecological functions. However, comprehensive insights into the effects of overgrazing and grazing exclusion on Caatinga soils' multifunctionality are lacking.
View Article and Find Full Text PDFJ Dairy Sci
January 2025
Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden; The Beijer Laboratory for Animal Science, Faculty for Vet. Med. and Animal Science, SLU, 750 07 Uppsala, Sweden.
In cow-calf contact (CCC) systems breaking the maternal bond may induce stress for the cow, thereby affecting feed intake, milk yield, milk flow rate, and milk electrical conductivity. This study aimed to determine the consequences of weaning and separation strategies in CCC systems for feed intake and milking characteristics of the cow. In 2 experiments, Swedish Holstein and Swedish Red cows either had (experiment 1) whole-day CCC (CCC1, n = 12) for 8.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China. Electronic address:
Plant diversity is fundamental to maintaining grassland ecosystem function. Rangeland managers use fencing as a strategy to enhance plant diversity in degraded grasslands. However, the effects of this natural management approach on grasslands across a wide range of environmental gradients and its spatial pattern remain unclear.
View Article and Find Full Text PDFSci Rep
December 2024
College of Computing and Information Sciences, University of Technology and Applied Sciences, Muscat, Oman.
The Underwater Sensor Network (UWSN) comprises sensor nodes with sensing, data processing, and communication capabilities. Due to the limitation of underwater radio wave propagation, nodes rely on acoustic signals to communicate. The data gathered by these nodes is transmitted to coordinating nodes or ground stations for additional processing and analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!