MCAM knockdown impairs PPARγ expression and 3T3-L1 fibroblasts differentiation to adipocytes.

Mol Cell Biochem

Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina.

Published: November 2018

We investigated for the first time the expression of melanoma cell adhesion molecule (MCAM) and its involvement in the differentiation of 3T3-L1 fibroblasts to adipocytes. We found that MCAM mRNA increased subsequent to the activation of the master regulator of adipogenesis, PPARγ, and this increase was maintained in the mature adipocytes. On the other hand, MCAM knockdown impaired differentiation and induction of PPARγ as well as expression of genes activated by PPARγ. However, events that precede and are necessary for early PPARγ activation, such as C/EBPβ induction, β-catenin downregulation, and ERK activation, were not affected in the MCAM knockdown cells. In keeping with this, the increase in PPARγ mRNA that precedes MCAM induction was not altered in the knockdown cells. In conclusion, our findings suggest that MCAM is a gene upregulated and involved in maintaining PPARγ induction in the late but not in the early stages of 3T3-L1 fibroblasts adipogenesis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435271PMC
http://dx.doi.org/10.1007/s11010-018-3334-8DOI Listing

Publication Analysis

Top Keywords

mcam knockdown
12
3t3-l1 fibroblasts
12
knockdown cells
8
mcam
7
pparγ
7
knockdown impairs
4
impairs pparγ
4
pparγ expression
4
expression 3t3-l1
4
fibroblasts differentiation
4

Similar Publications

Cell state control is crucial for normal tissue development and cancer cell mimicry of stem/progenitor states, contributing to tumor heterogeneity, therapy resistance, and progression. Here, we demonstrate that the cell surface glycoprotein Mcam maintains the tumorigenic luminal progenitor (LP)-like epithelial cell state, leading to Basal-like mammary cancers. In the Py230 mouse mammary carcinoma model, Mcam knockdown (KD) destabilized the LP state by deregulating the Ck2/Stat3 axis, causing a switch to alveolar and basal states, loss of an estrogen-sensing subpopulation, and resistance to tamoxifen-an effect reversed by Ck2 and Stat3 inhibitors.

View Article and Find Full Text PDF

In this study, we used data-independent acquisition-mass spectrometry (DIA-MS) to analyze the serum proteome in psoriasis vulgaris (PsO). The serum proteomes of seven healthy controls and eight patients with PsO were analyzed using DIA-MS. Weighted gene co-expression network analysis was used to identify differentially expressed proteins (DEPs) that were closely related to PsO.

View Article and Find Full Text PDF

Breast cancers are categorized into subtypes with distinctive therapeutic vulnerabilities and prognoses based on their expression of clinically targetable receptors and gene expression patterns mimicking different cell types of the normal gland. Here, we tested the role of Mcam in breast cancer cell state control and tumorigenicity in a luminal progenitor-like murine tumor cell line (Py230) that exhibits lineage and tumor subtype plasticity. Mcam knockdown Py230 cells show augmented Stat3 and Pi3K/Akt activation associated with a lineage state switch away from a hormone-sensing/luminal progenitor state toward alveolar and basal cell related phenotypes that were refractory to growth inhibition by the anti-estrogen therapeutic, tamoxifen.

View Article and Find Full Text PDF

Histone variant H3.3 promotes metastasis in alveolar rhabdomyosarcoma.

J Pathol

March 2023

Department of Physiology, Healthy Longevity and NUS Cancer Centre for Cancer Research Translation Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.

The relatively quiet mutational landscape of rhabdomyosarcoma (RMS) suggests that epigenetic deregulation could be central to oncogenesis and tumour aggressiveness. Histone variants have long been recognised as important epigenetic regulators of gene expression. However, the role of histone variants in RMS has not been studied hitherto.

View Article and Find Full Text PDF

Background: The dysregulation of circular RNAs (circRNAs) participates in the malignant progression of multiple cancers, including osteosarcoma (OS). However, the role of circ_0097271 in OS development remains unclear. We thus aimed at unveiling the functional role and mechanism of circ_0097271 in OS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!