AI Article Synopsis

  • Spinocerebellar ataxia type 2 (SCA2) is a hereditary neurodegenerative disease primarily affecting the cerebellum and brainstem, with this study focusing on atrophy patterns in both preclinical (non-manifest) and manifest (symptomatic) SCA2 patients.
  • The research involved 16 non-manifest carriers, 26 manifest patients, and 18 healthy controls, utilizing MRI scans alongside clinical assessments, revealing significant brain volume reductions in the cerebellum and brainstem related to disease severity.
  • Findings suggest that preclinical individuals show brain abnormalities that could serve as early indicators of disease progression and might be useful for future preventive treatments.

Article Abstract

Objective: Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disease mainly affecting the cerebellum and brainstem. In this Cuban-German research collaboration, we aimed to characterize atrophy patterns and associations with clinical measures in preclinical and manifest SCA2.

Methods: In this study, 16 nonmanifest SCA2 mutation carriers, 26 manifest patients with SCA2, and 18 healthy control subjects underwent magnetic resonance imaging, as well as genetic and clinical characterization including assessment of ataxia (Scale for the Assessment and Rating of Ataxia) and saccade velocity in Cuba were enrolled. Semiautomated quantitative volumetry of the cerebellum and brainstem, subdivided into the medulla oblongata, the pontine brainstem, and mesencephalon was performed. Additionally, the anteroposterior diameter of the pontine brainstem was measured.

Results: Analysis of volumetric data revealed degeneration of the cerebellum and brainstem, in particular of pontine volumes and the anteroposterior diameter of the pons, in both manifest SCA2 patients and individuals at risk for SCA2 compared to controls. Comparing patients with nonataxic preclinical SCA2 mutation carriers, we found more pronounced reductions of the pontine brainstem and cerebellum in manifest SCA2. Volumetric data further showed associations with CAG repeat length and predicted age of onset in preclinical SCA2 individuals, and by trend with ataxia signs in patients. Although saccade velocity was associated with reduction in the pontine brainstem in preclinical and manifest SCA2, reduced ability to suppress interfering stimuli measured by the Stroop task was related to cerebellar volume loss in patients.

Interpretation: Preclinical SCA2 mutation carriers exhibit brain abnormalities, which could be targeted as surrogate parameters for disease progression and in future preventive trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5817824PMC
http://dx.doi.org/10.1002/acn3.504DOI Listing

Publication Analysis

Top Keywords

pontine brainstem
16
preclinical manifest
12
cerebellum brainstem
12
sca2 mutation
12
mutation carriers
12
manifest sca2
12
preclinical sca2
12
sca2
10
measures preclinical
8
spinocerebellar ataxia
8

Similar Publications

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

The cochlear nuclear complex (CN), the starting point for all central auditory processing, encompasses a suite of neuronal cell types highly specialized for neural coding of acoustic signals. However, the molecular logic governing these specializations remains unknown. By combining single-nucleus RNA sequencing and Patch-seq analysis, we reveal a set of transcriptionally distinct cell populations encompassing all previously observed types and discover multiple hitherto unknown subtypes with anatomical and physiological identity.

View Article and Find Full Text PDF

Transcutaneous vagus nerve stimulation (tVNS) offers a non-invasive method to enhance noradrenergic neurotransmission in the human brain, thereby increasing cognitive control. Here, we investigate if changes in cognitive control induced by tVNS are mediated through locus coeruleus-induced modifications of neural activity in the anterior cingulate cortex. Young healthy participants engaged in a simple cognitive control task focusing on response inhibition and a more complex task that involved both response inhibition and working memory, inside a magnetic resonance imaging scanner.

View Article and Find Full Text PDF

Objective: Our aim was to research the neuromelanin-sensitive magnetic resonance imaging (NM-MRI) features of the locus coeruleus (LC) in essential tremor (ET) patients of various cognitive states and to explore the relationships between these features and cognition.

Methods: We recruited three groups of participants, including 30 ET patients with mild cognitive impairment (ET-MCI), 57 ET patients with normal cognition (ET-NC), and 105 healthy controls (HCs). All participants underwent MRI scanning and clinical evaluation.

View Article and Find Full Text PDF

Introduction: Diffuse intrinsic pontine gliomas are associated with dismal survival outcomes. Conventional fractionation radiation to a dose of 60 Gy is the standard of treatment. This retrospective review aims to compare survival and toxicity outcomes of patients treated with conventional fractionation (CF) and hypofractionation (HF) radiotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!