Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study aimed to investigate the role of microRNA-96 (miR-96) in the proliferation, invasion and apoptosis of bladder cancer cell lines, and the associated mechanisms. The expression of miR-96 and human ether-à--related (HERG1) potassium channel in the normal uroepithelium SV-HUC-1 cell line, and bladder cancer T24 and 5637 cell lines were examined using reverse transcription-polymerase chain reaction or/and western blotting. Transfection with miR-96 inhibitor or scrambled control (SC) was used to study the biological activities of miR-96 in bladder cancer cell lines. MTT, flow cytometric and Transwell assays were applied to detect cell viability, apoptosis and invasion, respectively. A dual-luciferase reporter assay was applied to determine the association between miR-96 and HERG1 expression. As demonstrated, miR-96 was highly expressed in the two bladder cancer cell lines, particularly in T24 cells. Following transfection with miR-96 inhibitor, miR-96 expression was significantly reduced in the T24 cell line, compared with SC. The miR-96 inhibitor suppressed cell proliferation and invasion, promoted apoptosis and arrested the cell cycle at the G phase. Consistently, HERG1 was also highly expressed in the two bladder cancer cell lines at the mRNA and protein level, but not in the normal uroepithelium cell line. The miR-96 inhibitor also significantly decreased HERG1 expression compared with SC. The results of the dual-luciferase reporter assay indicated that miR-96 directly targeted wild-type HERG1. In conclusion, miR-96 inhibitor exhibited anticancer effects on bladder cancer cells by inhibiting proliferation and invasion of cells, and promoting their apoptosis. HERG1 was an important target of miR-96. These results provided experimental evidence supporting miR-96 as a therapeutic target for patients with bladder cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5795921 | PMC |
http://dx.doi.org/10.3892/ol.2018.7745 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!