Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Epilepsy is a neurological disorder characterized by an increased predisposition for seizures. Although this definition suggests that it is a single disorder, epilepsy encompasses a group of disorders with diverse aetiologies and outcomes. A genetic basis for epilepsy syndromes has been postulated for several decades, with several mutations in specific genes identified that have increased our understanding of the genetic influence on epilepsies. With 70-80% of epilepsy cases identified to have a genetic cause, there are now hundreds of genes identified to be associated with epilepsy syndromes which can be analyzed using next generation sequencing (NGS) techniques such as targeted gene panels, whole exome sequencing (WES) and whole genome sequencing (WGS). For effective use of these methodologies, diagnostic laboratories and clinicians require information on the relevant workflows including analysis and sequencing depth to understand the specific clinical application and diagnostic capabilities of these gene sequencing techniques. As epilepsy is a complex disorder, the differences associated with each technique influence the ability to form a diagnosis along with an accurate detection of the genetic etiology of the disorder. In addition, for diagnostic testing, an important parameter is the cost-effectiveness and the specific diagnostic outcome of each technique. Here, we review these commonly used NGS techniques to determine their suitability for application to epilepsy genetic diagnostic testing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808353 | PMC |
http://dx.doi.org/10.3389/fgene.2018.00020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!