Aim: To assess the viability of orthotopic and heterotopic patient-derived pancreatic cancer xenografts implanted into nude mice.
Methods: This study presents a prospective experimental analytical follow-up of the development of tumours in mice upon implantation of human pancreatic adenocarcinoma samples. Specimens were obtained surgically from patients with a pathological diagnosis of pancreatic adenocarcinoma. Tumour samples from pancreatic cancer patients were transplanted into nude mice in three different locations (intraperitoneal, subcutaneous and pancreatic). Histological analysis (haematoxylin-eosin and Masson's trichrome staining) and immunohistochemical assessment of apoptosis (TUNEL), proliferation (Ki-67), angiogenesis (CD31) and fibrogenesis (α-SMA) were performed. When a tumour xenograft reached the target size, it was re-implanted in a new nude mouse. Three sequential tumour xenograft generations were generated (F1, F2 and F3).
Results: The overall tumour engraftment rate was 61.1%. The subcutaneous model was most effective in terms of tissue growth (69.9%), followed by intraperitoneal (57.6%) and pancreatic (55%) models. Tumour development was faster in the subcutaneous model (17.7 ± 2.6 wk) compared with the pancreatic (23.1 ± 2.3 wk) and intraperitoneal (25.0 ± 2.7 wk) models ( = 0.064). There was a progressive increase in the tumour engraftment rate over successive generations for all three models (F1 28.1% F2 71.4% F3 80.9%, < 0.001). There were no significant differences in tumour xenograft differentiation and cell proliferation between human samples and the three experimental models among the sequential generations of tumour xenografts. However, a progressive decrease in fibrosis, fibrogenesis, tumour vascularisation and apoptosis was observed in the three experimental models compared with the human samples. All three pancreatic patient-derived xenograft models presented similar histological and immunohistochemical characteristics.
Conclusion: In our experience, the faster development and greatest number of viable xenografts could make the subcutaneous model the best option for experimentation in pancreatic cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5807938 | PMC |
http://dx.doi.org/10.3748/wjg.v24.i7.794 | DOI Listing |
Nat Commun
December 2024
Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.
View Article and Find Full Text PDFNat Commun
December 2024
Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, CA, USA.
Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low.
View Article and Find Full Text PDFHere we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China.
Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.
View Article and Find Full Text PDFFront Immunol
December 2024
Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China.
Aldo-keto reductase family 1 member B10 (AKR1B10) is a member of the AKR1B subfamily. It is mainly found in cytoplasm, and it is typically expressed in the stomach and intestines. Given that its expression is low or absent in other tissues, AKR1B10 is a potential diagnostic and therapeutic biomarker for various digestive system diseases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!