Genome-wide CRISPR screen reveals SGOL1 as a druggable target of sorafenib-treated hepatocellular carcinoma.

Lab Invest

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Published: June 2018

The genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screen is a powerful tool used to identify therapeutic targets that can be harnessed for cancer treatment. This study aimed to assess the efficacy of genome-wide CRISPR screening to identify druggable genes associated with sorafenib-treated hepatocellular carcinoma (HCC). A genome-scale CRISPR knockout (GeCKO v2) library containing 123,411 single guide RNAs (sgRNAs) was used to identify loss-of-function mutations conferring sorafenib resistance upon HCC cells. Resistance gene screens identified SGOL1 as an indicator of prognosis of patients treated with sorafenib. Of the 19,050 genes tested, the knockout screen identified inhibition of SGOL1 expression as the most-effective genetic suppressor of sorafenib activity. Analysis of the survival of 210 patients with HCC after hepatic resection revealed that high SGOL1 expression shortened overall survival (P = 0.021). Further, matched pairs analysis of the TCGA database revealed that SGOL1 is differentially expressed. When we used a lentivirus Cas9 vector to determine the effect of targeting SGOL1 with a specific sgRNA in HCC cells, we found that SGOL1 expression was efficiently inhibited and that loss of SGOL1 was associated with sorafenib resistance. Further, loss of SGOL1 from HCC cell decreased the cytotoxicity of sorafenib in vivo. We conclude that the CRISPR screen is a powerful tool for therapeutic target analysis of sorafenib treatment and that SGOL1 serves as a druggable target for HCC treated with sorafenib and an indicator of prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41374-018-0027-6DOI Listing

Publication Analysis

Top Keywords

crispr screen
12
sgol1 expression
12
sgol1
10
genome-wide crispr
8
druggable target
8
sorafenib-treated hepatocellular
8
hepatocellular carcinoma
8
screen powerful
8
powerful tool
8
sorafenib resistance
8

Similar Publications

Exposure to saturated fatty acids (SFAs), such as palmitic acid, can lead to cellular metabolic dysfunction known as lipotoxicity. Although canonical adaptive metabolic processes like lipid storage or desaturation are known cellular responses to saturated fat exposure, the link between SFA metabolism and organellar biology remains an area of active inquiry. We performed a genome-wide CRISPR knockout screen in human epithelial cells to identify modulators of SFA toxicity.

View Article and Find Full Text PDF

Zebrafish as a model system for studying reproductive diseases.

Front Cell Dev Biol

December 2024

Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Organs Development and Epigenetics, Key Laboratory of Jiangxi Province for Biological Invasion and Biosecurity, College of Life Sciences, Clinical Research Center of Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, China.

Reproductive system diseases have become a major health challenge facing humans, so extensive investigations are needed to understand their complex pathogenesis and summarize effective treatments. In the study of reproductive diseases, mice are the most commonly used animal model. However, the cost and time required to establish mouse animal models are high.

View Article and Find Full Text PDF

Neuroblastoma (NB) remains associated with high mortality and low initial response rate, especially for high-risk patients, thus warranting exploration of molecular markers for precision risk classifiers. Through integrating multiomics profiling, we identified a range of hub genes involved in cell cycle and associated with dismal prognosis and malignant cells. Single-cell transcriptome sequencing revealed that a subset of malignant cells, subcluster 1, characterized by high proliferation and dedifferentiation, was strongly correlated with the hub gene signature and orchestrated an immunosuppressive tumor microenvironment (TME).

View Article and Find Full Text PDF

In vivo CRISPR activation screening reveals Chromosome 1q genes VPS72, GBA1, and MRPL9 drive hepatocellular carcinoma.

Cell Mol Gastroenterol Hepatol

January 2025

Department of Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA. Electronic address:

Background & Aims: Hepatocellular carcinoma (HCC) frequently undergoes regional chromosomal amplification, resulting in elevated gene expression levels. We aimed to elucidate the role of these poorly understood genetic changes by employing CRISPR activation (CRISPRa) screening in mouse livers to identify which genes within these amplified loci are cancer driver genes.

Methods: We used data from The Cancer Genome Atlas (TCGA) to identify that frequently copy number-amplified and upregulated genes all reside on human Chromosomes 1q and 8q.

View Article and Find Full Text PDF

Rapid detection of by recombinase-aided amplification combined with the CRISPR/Cas12a system.

Front Cell Infect Microbiol

January 2025

State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.

() is one of the primary agents involved in porcine respiratory disease complex, and circulates in the swine industry worldwide. The prevention and control of is complicated. Thus, a recombinase-aided amplification (RAA) assay coupled with the clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas12a system was established for the detection of .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!