Recent evidence has revealed that oncogenic mutations may confer immune escape. A better understanding of how an oncogenic mutation affects immunosuppressive programmed death ligand 1 (PD-L1) expression may help in developing new therapeutic strategies. We show that oncogenic JAK2 (Janus kinase 2) activity caused STAT3 (signal transducer and activator of transcription 3) and STAT5 phosphorylation, which enhanced PD-L1 promoter activity and PD-L1 protein expression in JAK2-mutant cells, whereas blockade of JAK2 reduced PD-L1 expression in myeloid JAK2-mutant cells. PD-L1 expression was higher on primary cells isolated from patients with JAK2-myeloproliferative neoplasms (MPNs) compared to healthy individuals and declined upon JAK2 inhibition. JAK2 mutational burden, pSTAT3, and PD-L1 expression were highest in primary MPN patient-derived monocytes, megakaryocytes, and platelets. PD-1 (programmed death receptor 1) inhibition prolonged survival in human MPN xenograft and primary murine MPN models. This effect was dependent on T cells. Mechanistically, PD-L1 surface expression in JAK2-mutant cells affected metabolism and cell cycle progression of T cells. In summary, we report that in MPN, constitutive JAK2/STAT3/STAT5 activation, mainly in monocytes, megakaryocytes, and platelets, caused PD-L1-mediated immune escape by reducing T cell activation, metabolic activity, and cell cycle progression. The susceptibility of JAK2-mutant MPN to PD-1 targeting paves the way for immunomodulatory approaches relying on PD-1 inhibition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6034655PMC
http://dx.doi.org/10.1126/scitranslmed.aam7729DOI Listing

Publication Analysis

Top Keywords

pd-l1 expression
20
immune escape
12
jak2-mutant cells
12
oncogenic jak2
8
pd-l1
8
programmed death
8
expression jak2-mutant
8
monocytes megakaryocytes
8
megakaryocytes platelets
8
cell cycle
8

Similar Publications

Purpose: This study examined the roles of nuclear factor erythroid 2-related factor 2 (NRF2) and programmed death ligand 1 (PD-L1) in colon carcinogenesis, underscoring on sex and differences in tumor location.

Materials And Methods: A total of 378 participants were enrolled from Seoul National University Bundang Hospital: 88 healthy controls (HC), 139 patients with colorectal adenoma (AD), and 151 patients with colorectal cancer (CRC). Quantitative real-time polymerase chain reaction (PCR), methylation-specific PCR, and immunohistochemistry (IHC) were performed utilizing tumor samples from patients and normal mucosa in the HC group.

View Article and Find Full Text PDF

Background: The heterogeneity of cancer makes it challenging to predict its response to immunotherapy, highlighting the need to find reliable biomarkers for assessment. The sophisticated role of cancer stemness in mediating resistance to immune checkpoint inhibitors (ICIs) is still inadequately comprehended.

Methods: Genome-scale CRISPR screening of RNA sequencing data from Project Achilles was utilized to pinpoint crucial genes unique to Ovarian Cancer (OV).

View Article and Find Full Text PDF

Dendritic cells (DCs) are specialized immune cells that play a crucial role in presenting antigens and activating cytotoxic T lymphocytes to combat tumors. The immune checkpoint receptor programmed cell death-1 (PD-1) can bind to its ligand programmed cell death-ligand 1 (PD-L1), which is expressed on the surface of cancer cells. This interaction suppresses T-cell activation and promotes immune tolerance.

View Article and Find Full Text PDF

Objectives: To investigate the mechanism of PHPS1 for promoting apoptosis of oral squamous cell carcinoma cells and the role of AMPK in regulating tumor angiogenesis under hypoxic conditions.

Methods: Human oral squamous cell carcinoma Ca9-22 cells cultured in hypoxic conditions (1% O) were inoculated subcutaneously in 16 nude mice, which were divided into control group and PHPS1 group (8) for treatment with 10% DMSO and 10% PHPS1 respectively. Tumor growth in the mice was monitored till 14 days after the treatment, and the xenografts were examined pathologically using HE staining.

View Article and Find Full Text PDF

A mechanistic, functional, and clinical perspective on targeting CD70 in cancer.

Cancer Lett

December 2024

Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois Chicago, Chicago, IL, 60612, USA; University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois Chicago, Chicago, IL 60612, USA; Research Unit, Jesse Brown VA Medical Center, Chicago, IL 60612, USA. Electronic address:

The oncoimmunology research has witnessed notable advancements in recent years. Reshaping the tumor microenvironment (TME) approach is an effective method to improve antitumor immune response. The T cell-mediated antitumor response is crucial for favorable therapeutic outcomes in several cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!