A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Review: Integrating a semen quality control program and sire fertility at a large artificial insemination organization. | LitMetric

The technology available to assess sperm population characteristics has advanced greatly in recent years. Large artificial insemination (AI) organizations that sell bovine semen utilize many of these technologies not only for novel research purposes, but also to make decisions regarding whether to sell or discard the product. Within an AI organization, the acquisition, interpretation and utilization of semen quality data is often performed by a quality control department. In general, quality control decisions regarding semen sales are often founded on the linkages established between semen quality and field fertility. Although no one individual sperm bioassay has been successful in predicting sire fertility, many correlations to various in vivo fertility measures have been reported. The most powerful techniques currently available to evaluate semen are high-throughput and include computer-assisted sperm analysis and various flow cytometric analyses that quantify attributes of fluorescently stained cells. However, all techniques measuring biological parameters are subject to the principles of precision, accuracy and repeatability. Understanding the limitations of repeatability in laboratory analyses is important in a quality control and quality assurance program. Hence, AI organizations that acquire sizeable data sets pertaining to sperm quality and sire fertility are well-positioned to examine and comment on data collection and interpretation. This is especially true for sire fertility, where the population of AI sires has been highly selected for fertility. In the December 2017 sire conception rate report by the Council on Dairy Cattle Breeding, 93% of all Holstein sires (n=2062) possessed fertility deviations within 3% of the breed average. Regardless of the reporting system, estimates of sire fertility should be based on an appropriate number of services per sire. Many users impose unrealistic expectations of the predictive value of these assessments due to a lack of understanding for the inherent lack of precision in binomial data gathered from field sources. Basic statistical principles warn us of the importance of experimental design, balanced treatments, sampling bias, appropriate models and appropriate interpretation of results with consideration for sample size and statistical power. Overall, this review seeks to describe and connect the use of sperm in vitro bioassays, the reporting of AI sire fertility, and the management decisions surrounding the implementation of a semen quality control program.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1751731118000319DOI Listing

Publication Analysis

Top Keywords

sire fertility
24
quality control
20
semen quality
16
fertility
10
quality
9
control program
8
sire
8
large artificial
8
artificial insemination
8
semen
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!