Neuregulin-1 elicits a regulatory immune response following traumatic spinal cord injury.

J Neuroinflammation

Regenerative Medicine Program, Department of Physiology and Pathophysiology, Faculty of Medicine, Spinal Cord Research Centre, University of Manitoba, 629-Basic Medical Sciences Building, 745 Bannatyne Avenue, Winnipeg, Manitoba, R3E 0J9, Canada.

Published: February 2018

Background: Spinal cord injury (SCI) triggers a robust neuroinflammatory response that governs secondary injury mechanisms with both degenerative and pro-regenerative effects. Identifying new immunomodulatory therapies to promote the supportive aspect of immune response is critically needed for the treatment of SCI. We previously demonstrated that SCI results in acute and permanent depletion of the neuronally derived Neuregulin-1 (Nrg-1) in the spinal cord. Increasing the dysregulated level of Nrg-1 through acute intrathecal Nrg-1 treatment enhanced endogenous cell replacement and promoted white matter preservation and functional recovery in rat SCI. Moreover, we identified a neuroprotective role for Nrg-1 in moderating the activity of resident astrocytes and microglia following injury. To date, the impact of Nrg-1 on immune response in SCI has not yet been investigated. In this study, we elucidated the effect of systemic Nrg-1 therapy on the recruitment and function of macrophages, T cells, and B cells, three major leukocyte populations involved in neuroinflammatory processes following SCI.

Methods: We utilized a clinically relevant model of moderately severe compressive SCI in female Sprague-Dawley rats. Nrg-1 (2 μg/day) or saline was delivered subcutaneously through osmotic mini-pumps starting 30 min after SCI. We conducted flow cytometry, quantitative real-time PCR, and immunohistochemistry at acute, subacute, and chronic stages of SCI to investigate the effects of Nrg-1 treatment on systemic and spinal cord immune response as well as cytokine, chemokine, and antibody production.

Results: We provide novel evidence that Nrg-1 promotes a pro-regenerative immune response after SCI. Bioavailability of Nrg-1 stimulated a regulatory phenotype in T and B cells and augmented the population of M2 macrophages in the spinal cord and blood during the acute and chronic stages of SCI. Importantly, Nrg-1 fostered a more balanced microenvironment in the injured spinal cord by attenuating antibody deposition and expression of pro-inflammatory cytokines and chemokines while upregulating pro-regenerative mediators.

Conclusion: We provide the first evidence of a significant regulatory role for Nrg-1 in neuroinflammation after SCI. Importantly, the present study establishes the promise of systemic Nrg-1 treatment as a candidate immunotherapy for traumatic SCI and other CNS neuroinflammatory conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5822667PMC
http://dx.doi.org/10.1186/s12974-018-1093-9DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
immune response
20
nrg-1
13
sci
12
nrg-1 treatment
12
cord injury
8
role nrg-1
8
response sci
8
systemic nrg-1
8
chronic stages
8

Similar Publications

Chordoma is a rare malignant tumor with a higher incidence in males than in females. There is an increasing number of clinical studies related to tyrosine kinase inhibitors (TKIs), yet the efficacy and safety of different drugs vary. In this single-arm meta-analysis evaluating the efficacy and safety of TKIs for chordoma treatment, 12 studies involving 365 patients were analyzed.

View Article and Find Full Text PDF

Background: Gait impairments are one of the popular consequences of spinal cord injury (SCI). Acute intermittent hypoxia (AIH) is an innovative treatment that has recently been used to enhance motor function in patients with neurological conditions. This review aims to examine the effects of AIH on gait post-SCI, verify who most likely would benefit from the treatment, and recognize the best treatment protocol, if possible.

View Article and Find Full Text PDF

Voxel-based morphometry (VBM) of T1-weighted (T1-w) magnetic resonance imaging (MRI) is primarily used to study the association of brain structure with cognitive functions. However, in theory, T2-weighted (T2-w) MRI could also be used in VBM studies because of its sensitivity to pathology and tissue changes. We aimed to compare the T1-w and T2-w images to study brain structures in association with cognitive abilities.

View Article and Find Full Text PDF

Lesions of the dorsal columns of the spinal cord in adult macaque monkeys lead to the loss of hand inputs and large-scale expansion of the face inputs in the hand region of the somatosensory cortex. Inputs from alternate spinal pathways do not reactivate the deafferented regions of area 3b. Here, we determined how transections of the dorsal columns done within a few days after birth affect the developing somatosensory cortex.

View Article and Find Full Text PDF

Reward Decision Network Disconnection in Poststroke Apathy: A Prospective Multimodality Imaging Study.

Hum Brain Mapp

February 2025

Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.

Apathy is a common neuropsychiatric symptom following stroke, characterized by reduced goal-directed behavior. The reward decision network (RDN), which plays a crucial role in regulating goal-directed behaviors, is closely associated with apathy. However, the relationship between poststroke apathy (PSA) and RDN dysfunction remains unclear due to apathy heterogeneity, the confounding effect of depression and individual variability in lesion impacts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!