The longstanding biotic interactions hypothesis predicts that herbivore pressure declines with latitude, but the evidence is mixed. To address gaps in previous studies, we measured herbivory and defence in the same system, quantified defence with bioassays, and considered effects of leaf age. We quantified herbivory and defence of young and mature leaves along a continental gradient in eastern North America in the native herb Phytolacca americana L. Herbivory in the field declined with latitude and was strongly correlated with lepidopteran abundance. Laboratory bioassays revealed that leaf palatability was positively correlated with latitude of origin. Young leaves were more damaged than mature leaves at lower latitudes in the field, but less palatable in bioassays. Both defence and palatability displayed non-linear latitudinal patterns, suggesting potential mechanisms based on biological or climatic thresholds. In sum, observational and experimental studies find patterns consistent with high herbivore pressure and stronger plant defences at lower latitudes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.12925 | DOI Listing |
Animals (Basel)
December 2024
State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
The gut microbiota is integral to the health and adaptability of wild herbivores. Interactions with soil microbiota can shape the composition and function of the gut microbiota, thereby influencing the hosts' adaptive strategies. As a result, soil microbiota plays a pivotal role in enabling wild herbivores to thrive in extreme environments.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
Institute of Biology, University of Neuchatel, 2000 Neuchatel,Switzerland.
The use of nanoparticles is a promising ecofriendly strategy for mitigating both abiotic and biotic stresses. However, the physiological and defense response mechanisms of plants exposed to multiple stresses remain largely unexplored. Herein, we examined how foliar application of biogenic nanosilica (BNS) impacts rice plant growth, molecular defenses, and metabolic responses when subjected to arsenic (As) toxicity and infested by the insect .
View Article and Find Full Text PDFMar Environ Res
December 2024
University of Sassari, Department of Chemical, Physical, Mathematical and Natural Sciences, Sassari, Italy; National Biodiversity Future Centre, Palermo, Italy.
Recovering seagrass ecosystems through restoration has become impellent to re-establish their functionality and services. Although the use of seedlings may represent an appropriate solution, little information is provided on the seedling-based restoration effectiveness with influence of biotic and abiotic interactions. Survival, morphological development and leaf total phenol content of transplanted Posidonia oceanica seedlings were evaluated under different origin, thermal regimes and herbivore pressure through a five-months field experiment in two MPAs, located on the west (cold) and east (warm) Sardinia coast to explore the effectiveness of seedling-based restoration.
View Article and Find Full Text PDFTree Physiol
December 2024
Department of Ecology, Faculty of Biology, University of Salamanca, Salamanca 37071, Spain.
Insect herbivory has attracted enormous attention from researchers due to its effects on plant fitness. However, there remain questions such as what are the most important leaf traits that determine consumption levels, whether there are latitudinal gradients in herbivore pressure, or whether there are differences in susceptibility between hybrids and their parental species. In this work we address all these issues in two species of Mediterranean Quercus (Q.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, Kentucky, USA.
The evolutionary arms race between plants and insects has led to key adaptive innovations that drive diversification. Alkaloids are well-documented anti-herbivory compounds in plant chemical defences, but how these specialized metabolites are allocated to cope with both biotic and abiotic stresses concomitantly is largely unknown. To examine how plants prioritize their metabolic resources responding to herbivory and cold, we integrated dietary toxicity bioassay in insects with co-expression analysis, hierarchical clustering, promoter assay, and protein-protein interaction in plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!