A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

sAPPβ and sAPPα increase structural complexity and E/I input ratio in primary hippocampal neurons and alter Ca homeostasis and CREB1-signaling. | LitMetric

One major pathophysiological hallmark of Alzheimer's disease (AD) is senile plaques composed of amyloid β (Aβ). In the amyloidogenic pathway, cleavage of the amyloid precursor protein (APP) is shifted towards Aβ production and soluble APPβ (sAPPβ) levels. Aβ is known to impair synaptic function; however, much less is known about the physiological functions of sAPPβ. The neurotrophic properties of sAPPα, derived from the non-amyloidogenic pathway of APP cleavage, are well-established, whereas only a few, conflicting studies on sAPPβ exist. The intracellular pathways of sAPPβ are largely unknown. Since sAPPβ is generated alongside Aβ by β-secretase (BACE1) cleavage, we tested the hypothesis that sAPPβ effects differ from sAPPα effects as a neurotrophic factor. We therefore performed a head-to-head comparison of both mammalian recombinant peptides in developing primary hippocampal neurons (PHN). We found that sAPPα significantly increases axon length (p = 0.0002) and that both sAPPα and sAPPβ increase neurite number (p < 0.0001) of PHN at 7 days in culture (DIV7) but not at DIV4. Moreover, both sAPPα- and sAPPβ-treated neurons showed a higher neuritic complexity in Sholl analysis. The number of glutamatergic synapses (p < 0.0001), as well as layer thickness of postsynaptic densities (PSDs), were significantly increased, and GABAergic synapses decreased upon sAPP overexpression in PHN. Furthermore, we showed that sAPPα enhances ERK and CREB1 phosphorylation upon glutamate stimulation at DIV7, but not DIV4 or DIV14. These neurotrophic effects are further associated with increased glutamate sensitivity and CREB1-signaling. Finally, we found that sAPPα levels are significantly reduced in brain homogenates of AD patients compared to control subjects. Taken together, our data indicate critical stage-dependent roles of sAPPs in the developing glutamatergic system in vitro, which might help to understand deleterious consequences of altered APP shedding in AD patients, beyond Aβ pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2018.02.010DOI Listing

Publication Analysis

Top Keywords

sappβ
8
primary hippocampal
8
hippocampal neurons
8
sappβ sappα
4
sappα increase
4
increase structural
4
structural complexity
4
complexity e/i
4
e/i input
4
input ratio
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!