Introduction: In mental healthcare, one area of major concern identified by health information systems is variability in antipsychotic prescribing. While most studies have investigated patient- and prescriber-related factors as possible reasons for such variability, no studies have investigated facility-level characteristics. The present study ascertained whether staffing level is associated with antipsychotic prescribing in community mental healthcare.
Methods: A cross-sectional analysis of data extracted from the Italian national mental health information system was carried out. For each Italian region, it collects data on the availability and use of mental health facilities. The rate of individuals exposed to antipsychotic drugs was tested for evidence of association with the rate of mental health staff availability by means of univariate and multivariate analyses.
Results: In Italy there were on average nearly 60 mental health professionals per 100,000 inhabitants, with wide regional variations (range 21 to 100). The average rate of individuals prescribed antipsychotic drugs was 2.33%, with wide regional variations (1.04% to 4.01%). Univariate analysis showed that the rate of individuals prescribed antipsychotic drugs was inversely associated with the rate of mental health professionals available in Italian regions (Kendall's tau -0.438, p = 0.006), with lower rates of antipsychotic prescriptions in regions with higher rates of mental health professionals. After adjustment for possible confounders, the total availability of mental health professionals was still inversely associated with the rate of individuals exposed to antipsychotic drugs.
Discussion: The evidence that staffing level was inversely associated with antipsychotic prescribing indicates that any actions aimed at decreasing variability in antipsychotic prescribing need to take into account aspects related to the organization of the mental health system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821351 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193216 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!