Epinephrine, a key stress hormone, is known to affect ion transport in the colon. Stress has been associated with alterations in colonic functions leading to changes in water movements manifested as diarrhea or constipation. Colonic water movement is driven by the Na+-gradient created by the Na+/K+-ATPase. Whether epinephrine acts via an effect on the Na+/K+-ATPase hasn't been studied before. The aim of this work was to investigate the effect of epinephrine on the Na+/K+-ATPase and to elucidate the signaling pathway involved using CaCo-2 cells as a model. The activity of the Na+/K+-ATPase was assayed by measuring the amount of inorganic phosphate released in presence and absence of ouabain, a specific inhibitor of the enzyme. Epinephrine, added for 20 minutes, decreased the activity of the Na+/K+-ATPase by around 50%. This effect was found to be mediated by α2 adrenergic receptors as it was fully abolished in the presence of yohimbine an α2-blocker, but persisted in presence of other adrenergic antagonists. Furthermore, treatment with Rp-cAMP, a PKA inhibitor, mimicked epinephrine's negative effect and didn't result in any additional inhibition when both were added simultaneously. Treatment with indomethacin, PP2, SB202190, and PD98059, respective inhibitors of COX enzymes, Src, p38MAPK, and ERK completely abrogated the effect of epinephrine. The effect of epinephrine did not appear also in presence of inhibitors of all four different types of PGE2 receptors. Western blot analysis revealed an epinephrine-induced increase in the phosphorylation of p38 MAPK and ERK that disappeared in presence of respectively PP2 and SB2020190. In addition, an inhibitory effect, similar to that of epinephrine's, was observed upon incubation with PGE2. It was concluded that epinephrine inhibits the Na+/K+-ATPase by the sequential activation of α2 adrenergic receptors, Src, p38MAPK, and ERK leading to PGE2 release.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5821373 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0193139 | PLOS |
Eur J Pharmacol
January 2025
Institute of Neurology, General Hospital of Shenyang Military Command, Shenyang, Liaoning 110016, China. Electronic address:
Bioorg Chem
June 2024
Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt. Electronic address:
A new series of benzene-sulfonamide derivatives 3a-i was designed and synthesized via the reaction of N-(pyrimidin-2-yl)cyanamides 1a-i with sulfamethazine sodium salt 2 as dual Src/Abl inhibitors. Spectral data IR, H-, C- NMR and elemental analyses were used to confirm the structures of all the newly synthesized compounds 3a-i and 4a-i. Crucially, we screened all the synthesized compounds 3a-i against NCI 60 cancer cell lines.
View Article and Find Full Text PDFInt J Mol Sci
December 2023
Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, 46012 Valencia, Spain.
Hyperammonemia contributes to hepatic encephalopathy. In hyperammonemic rats, cognitive function is impaired by altered glutamatergic neurotransmission induced by neuroinflammation. The underlying mechanisms remain unclear.
View Article and Find Full Text PDFPurpose: Extravillous trophoblasts (EVTs) invade the endometrium to establish a fetomaternal interaction during pregnancy. Epidermal growth factor (EGF) and heparin-binding EGF-like growth factor (HB-EGF) stimulate EVT invasion by binding to the EGF receptor (EGFR). We examined the role of the small GTP-binding protein Rap1 in EGF- and HB-EGF-stimulated EVT invasion.
View Article and Find Full Text PDFJ Hypertens
October 2023
Department of Physiology and Biophysics, Institute of Biomedical Science.
Objective: Endogenous ouabain (EO) increases in some patients with hypertension and in rats with volume-dependent hypertension. When ouabain binds to Na + K + -ATPase, cSrc is activated, which leads to multieffector signaling activation and high blood pressure (BP). In mesenteric resistance arteries (MRA) from deoxycorticosterone acetate (DOCA)-salt rats, we have demonstrated that the EO antagonist rostafuroxin blocks downstream cSrc activation, enhancing endothelial function and lowering oxidative stress and BP.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!